7.2 Binary Tree Traversal¶
From a physical structure perspective, a tree is a data structure based on linked lists. Hence, its traversal method involves accessing nodes one by one through pointers. However, a tree is a non-linear data structure, which makes traversing a tree more complex than traversing a linked list, requiring the assistance of search algorithms.
The common traversal methods for binary trees include level-order traversal, pre-order traversal, in-order traversal, and post-order traversal.
7.2.1 Level-Order Traversal¶
As shown in Figure 7-9, level-order traversal traverses the binary tree from top to bottom, layer by layer. Within each level, it visits nodes from left to right.
Level-order traversal is essentially breadth-first traversal, also known as breadth-first search (BFS), which embodies a "expanding outward circle by circle" layer-by-layer traversal method.
Figure 7-9 Level-order traversal of a binary tree
1. Code Implementation¶
Breadth-first traversal is typically implemented with the help of a "queue". The queue follows the "first in, first out" rule, while breadth-first traversal follows the "layer-by-layer progression" rule; the underlying ideas of the two are consistent. The implementation code is as follows:
def level_order(root: TreeNode | None) -> list[int]:
"""Level-order traversal"""
# Initialize queue, add root node
queue: deque[TreeNode] = deque()
queue.append(root)
# Initialize a list to save the traversal sequence
res = []
while queue:
node: TreeNode = queue.popleft() # Dequeue
res.append(node.val) # Save node value
if node.left is not None:
queue.append(node.left) # Left child node enqueue
if node.right is not None:
queue.append(node.right) # Right child node enqueue
return res
/* Level-order traversal */
vector<int> levelOrder(TreeNode *root) {
// Initialize queue, add root node
queue<TreeNode *> queue;
queue.push(root);
// Initialize a list to save the traversal sequence
vector<int> vec;
while (!queue.empty()) {
TreeNode *node = queue.front();
queue.pop(); // Dequeue
vec.push_back(node->val); // Save node value
if (node->left != nullptr)
queue.push(node->left); // Left child node enqueue
if (node->right != nullptr)
queue.push(node->right); // Right child node enqueue
}
return vec;
}
/* Level-order traversal */
List<Integer> levelOrder(TreeNode root) {
// Initialize queue, add root node
Queue<TreeNode> queue = new LinkedList<>();
queue.add(root);
// Initialize a list to save the traversal sequence
List<Integer> list = new ArrayList<>();
while (!queue.isEmpty()) {
TreeNode node = queue.poll(); // Dequeue
list.add(node.val); // Save node value
if (node.left != null)
queue.offer(node.left); // Left child node enqueue
if (node.right != null)
queue.offer(node.right); // Right child node enqueue
}
return list;
}
/* Level-order traversal */
List<int> LevelOrder(TreeNode root) {
// Initialize queue, add root node
Queue<TreeNode> queue = new();
queue.Enqueue(root);
// Initialize a list to save the traversal sequence
List<int> list = [];
while (queue.Count != 0) {
TreeNode node = queue.Dequeue(); // Dequeue
list.Add(node.val!.Value); // Save node value
if (node.left != null)
queue.Enqueue(node.left); // Left child node enqueue
if (node.right != null)
queue.Enqueue(node.right); // Right child node enqueue
}
return list;
}
/* Level-order traversal */
func levelOrder(root *TreeNode) []any {
// Initialize queue, add root node
queue := list.New()
queue.PushBack(root)
// Initialize a slice to save traversal sequence
nums := make([]any, 0)
for queue.Len() > 0 {
// Dequeue
node := queue.Remove(queue.Front()).(*TreeNode)
// Save node value
nums = append(nums, node.Val)
if node.Left != nil {
// Left child node enqueue
queue.PushBack(node.Left)
}
if node.Right != nil {
// Right child node enqueue
queue.PushBack(node.Right)
}
}
return nums
}
/* Level-order traversal */
func levelOrder(root: TreeNode) -> [Int] {
// Initialize queue, add root node
var queue: [TreeNode] = [root]
// Initialize a list to save the traversal sequence
var list: [Int] = []
while !queue.isEmpty {
let node = queue.removeFirst() // Dequeue
list.append(node.val) // Save node value
if let left = node.left {
queue.append(left) // Left child node enqueue
}
if let right = node.right {
queue.append(right) // Right child node enqueue
}
}
return list
}
/* Level-order traversal */
function levelOrder(root) {
// Initialize queue, add root node
const queue = [root];
// Initialize a list to save the traversal sequence
const list = [];
while (queue.length) {
let node = queue.shift(); // Dequeue
list.push(node.val); // Save node value
if (node.left) queue.push(node.left); // Left child node enqueue
if (node.right) queue.push(node.right); // Right child node enqueue
}
return list;
}
/* Level-order traversal */
function levelOrder(root: TreeNode | null): number[] {
// Initialize queue, add root node
const queue = [root];
// Initialize a list to save the traversal sequence
const list: number[] = [];
while (queue.length) {
let node = queue.shift() as TreeNode; // Dequeue
list.push(node.val); // Save node value
if (node.left) {
queue.push(node.left); // Left child node enqueue
}
if (node.right) {
queue.push(node.right); // Right child node enqueue
}
}
return list;
}
/* Level-order traversal */
List<int> levelOrder(TreeNode? root) {
// Initialize queue, add root node
Queue<TreeNode?> queue = Queue();
queue.add(root);
// Initialize a list to save the traversal sequence
List<int> res = [];
while (queue.isNotEmpty) {
TreeNode? node = queue.removeFirst(); // Dequeue
res.add(node!.val); // Save node value
if (node.left != null) queue.add(node.left); // Left child node enqueue
if (node.right != null) queue.add(node.right); // Right child node enqueue
}
return res;
}
/* Level-order traversal */
fn level_order(root: &Rc<RefCell<TreeNode>>) -> Vec<i32> {
// Initialize queue, add root node
let mut que = VecDeque::new();
que.push_back(root.clone());
// Initialize a list to save the traversal sequence
let mut vec = Vec::new();
while let Some(node) = que.pop_front() {
// Dequeue
vec.push(node.borrow().val); // Save node value
if let Some(left) = node.borrow().left.as_ref() {
que.push_back(left.clone()); // Left child node enqueue
}
if let Some(right) = node.borrow().right.as_ref() {
que.push_back(right.clone()); // Right child node enqueue
};
}
vec
}
/* Level-order traversal */
int *levelOrder(TreeNode *root, int *size) {
/* Auxiliary queue */
int front, rear;
int index, *arr;
TreeNode *node;
TreeNode **queue;
/* Auxiliary queue */
queue = (TreeNode **)malloc(sizeof(TreeNode *) * MAX_SIZE);
// Queue pointer
front = 0, rear = 0;
// Add root node
queue[rear++] = root;
// Initialize a list to save the traversal sequence
/* Auxiliary array */
arr = (int *)malloc(sizeof(int) * MAX_SIZE);
// Array pointer
index = 0;
while (front < rear) {
// Dequeue
node = queue[front++];
// Save node value
arr[index++] = node->val;
if (node->left != NULL) {
// Left child node enqueue
queue[rear++] = node->left;
}
if (node->right != NULL) {
// Right child node enqueue
queue[rear++] = node->right;
}
}
// Update array length value
*size = index;
arr = realloc(arr, sizeof(int) * (*size));
// Free auxiliary array space
free(queue);
return arr;
}
/* Level-order traversal */
fun levelOrder(root: TreeNode?): MutableList<Int> {
// Initialize queue, add root node
val queue = LinkedList<TreeNode?>()
queue.add(root)
// Initialize a list to save the traversal sequence
val list = mutableListOf<Int>()
while (queue.isNotEmpty()) {
val node = queue.poll() // Dequeue
list.add(node?._val!!) // Save node value
if (node.left != null)
queue.offer(node.left) // Left child node enqueue
if (node.right != null)
queue.offer(node.right) // Right child node enqueue
}
return list
}
### Level-order traversal ###
def level_order(root)
# Initialize queue, add root node
queue = [root]
# Initialize a list to save the traversal sequence
res = []
while !queue.empty?
node = queue.shift # Dequeue
res << node.val # Save node value
queue << node.left unless node.left.nil? # Left child node enqueue
queue << node.right unless node.right.nil? # Right child node enqueue
end
res
end
2. Complexity Analysis¶
- Time complexity is \(O(n)\): All nodes are visited once, using \(O(n)\) time, where \(n\) is the number of nodes.
- Space complexity is \(O(n)\): In the worst case, i.e., a full binary tree, before traversing to the bottom level, the queue contains at most \((n + 1) / 2\) nodes simultaneously, occupying \(O(n)\) space.
7.2.2 Preorder, Inorder, and Postorder Traversal¶
Correspondingly, preorder, inorder, and postorder traversals all belong to depth-first traversal, also known as depth-first search (DFS), which embodies a "first go to the end, then backtrack and continue" traversal method.
Figure 7-10 shows how depth-first traversal works on a binary tree. Depth-first traversal is like "walking" around the perimeter of the entire binary tree, encountering three positions at each node, corresponding to preorder, inorder, and postorder traversal.
Figure 7-10 Preorder, inorder, and postorder traversal of a binary tree
1. Code Implementation¶
Depth-first search is usually implemented based on recursion:
def pre_order(root: TreeNode | None):
"""Preorder traversal"""
if root is None:
return
# Visit priority: root node -> left subtree -> right subtree
res.append(root.val)
pre_order(root=root.left)
pre_order(root=root.right)
def in_order(root: TreeNode | None):
"""Inorder traversal"""
if root is None:
return
# Visit priority: left subtree -> root node -> right subtree
in_order(root=root.left)
res.append(root.val)
in_order(root=root.right)
def post_order(root: TreeNode | None):
"""Postorder traversal"""
if root is None:
return
# Visit priority: left subtree -> right subtree -> root node
post_order(root=root.left)
post_order(root=root.right)
res.append(root.val)
/* Preorder traversal */
void preOrder(TreeNode *root) {
if (root == nullptr)
return;
// Visit priority: root node -> left subtree -> right subtree
vec.push_back(root->val);
preOrder(root->left);
preOrder(root->right);
}
/* Inorder traversal */
void inOrder(TreeNode *root) {
if (root == nullptr)
return;
// Visit priority: left subtree -> root node -> right subtree
inOrder(root->left);
vec.push_back(root->val);
inOrder(root->right);
}
/* Postorder traversal */
void postOrder(TreeNode *root) {
if (root == nullptr)
return;
// Visit priority: left subtree -> right subtree -> root node
postOrder(root->left);
postOrder(root->right);
vec.push_back(root->val);
}
/* Preorder traversal */
void preOrder(TreeNode root) {
if (root == null)
return;
// Visit priority: root node -> left subtree -> right subtree
list.add(root.val);
preOrder(root.left);
preOrder(root.right);
}
/* Inorder traversal */
void inOrder(TreeNode root) {
if (root == null)
return;
// Visit priority: left subtree -> root node -> right subtree
inOrder(root.left);
list.add(root.val);
inOrder(root.right);
}
/* Postorder traversal */
void postOrder(TreeNode root) {
if (root == null)
return;
// Visit priority: left subtree -> right subtree -> root node
postOrder(root.left);
postOrder(root.right);
list.add(root.val);
}
/* Preorder traversal */
void PreOrder(TreeNode? root) {
if (root == null) return;
// Visit priority: root node -> left subtree -> right subtree
list.Add(root.val!.Value);
PreOrder(root.left);
PreOrder(root.right);
}
/* Inorder traversal */
void InOrder(TreeNode? root) {
if (root == null) return;
// Visit priority: left subtree -> root node -> right subtree
InOrder(root.left);
list.Add(root.val!.Value);
InOrder(root.right);
}
/* Postorder traversal */
void PostOrder(TreeNode? root) {
if (root == null) return;
// Visit priority: left subtree -> right subtree -> root node
PostOrder(root.left);
PostOrder(root.right);
list.Add(root.val!.Value);
}
/* Preorder traversal */
func preOrder(node *TreeNode) {
if node == nil {
return
}
// Visit priority: root node -> left subtree -> right subtree
nums = append(nums, node.Val)
preOrder(node.Left)
preOrder(node.Right)
}
/* Inorder traversal */
func inOrder(node *TreeNode) {
if node == nil {
return
}
// Visit priority: left subtree -> root node -> right subtree
inOrder(node.Left)
nums = append(nums, node.Val)
inOrder(node.Right)
}
/* Postorder traversal */
func postOrder(node *TreeNode) {
if node == nil {
return
}
// Visit priority: left subtree -> right subtree -> root node
postOrder(node.Left)
postOrder(node.Right)
nums = append(nums, node.Val)
}
/* Preorder traversal */
func preOrder(root: TreeNode?) {
guard let root = root else {
return
}
// Visit priority: root node -> left subtree -> right subtree
list.append(root.val)
preOrder(root: root.left)
preOrder(root: root.right)
}
/* Inorder traversal */
func inOrder(root: TreeNode?) {
guard let root = root else {
return
}
// Visit priority: left subtree -> root node -> right subtree
inOrder(root: root.left)
list.append(root.val)
inOrder(root: root.right)
}
/* Postorder traversal */
func postOrder(root: TreeNode?) {
guard let root = root else {
return
}
// Visit priority: left subtree -> right subtree -> root node
postOrder(root: root.left)
postOrder(root: root.right)
list.append(root.val)
}
/* Preorder traversal */
function preOrder(root) {
if (root === null) return;
// Visit priority: root node -> left subtree -> right subtree
list.push(root.val);
preOrder(root.left);
preOrder(root.right);
}
/* Inorder traversal */
function inOrder(root) {
if (root === null) return;
// Visit priority: left subtree -> root node -> right subtree
inOrder(root.left);
list.push(root.val);
inOrder(root.right);
}
/* Postorder traversal */
function postOrder(root) {
if (root === null) return;
// Visit priority: left subtree -> right subtree -> root node
postOrder(root.left);
postOrder(root.right);
list.push(root.val);
}
/* Preorder traversal */
function preOrder(root: TreeNode | null): void {
if (root === null) {
return;
}
// Visit priority: root node -> left subtree -> right subtree
list.push(root.val);
preOrder(root.left);
preOrder(root.right);
}
/* Inorder traversal */
function inOrder(root: TreeNode | null): void {
if (root === null) {
return;
}
// Visit priority: left subtree -> root node -> right subtree
inOrder(root.left);
list.push(root.val);
inOrder(root.right);
}
/* Postorder traversal */
function postOrder(root: TreeNode | null): void {
if (root === null) {
return;
}
// Visit priority: left subtree -> right subtree -> root node
postOrder(root.left);
postOrder(root.right);
list.push(root.val);
}
/* Preorder traversal */
void preOrder(TreeNode? node) {
if (node == null) return;
// Visit priority: root node -> left subtree -> right subtree
list.add(node.val);
preOrder(node.left);
preOrder(node.right);
}
/* Inorder traversal */
void inOrder(TreeNode? node) {
if (node == null) return;
// Visit priority: left subtree -> root node -> right subtree
inOrder(node.left);
list.add(node.val);
inOrder(node.right);
}
/* Postorder traversal */
void postOrder(TreeNode? node) {
if (node == null) return;
// Visit priority: left subtree -> right subtree -> root node
postOrder(node.left);
postOrder(node.right);
list.add(node.val);
}
/* Preorder traversal */
fn pre_order(root: Option<&Rc<RefCell<TreeNode>>>) -> Vec<i32> {
let mut result = vec![];
fn dfs(root: Option<&Rc<RefCell<TreeNode>>>, res: &mut Vec<i32>) {
if let Some(node) = root {
// Visit priority: root node -> left subtree -> right subtree
let node = node.borrow();
res.push(node.val);
dfs(node.left.as_ref(), res);
dfs(node.right.as_ref(), res);
}
}
dfs(root, &mut result);
result
}
/* Inorder traversal */
fn in_order(root: Option<&Rc<RefCell<TreeNode>>>) -> Vec<i32> {
let mut result = vec![];
fn dfs(root: Option<&Rc<RefCell<TreeNode>>>, res: &mut Vec<i32>) {
if let Some(node) = root {
// Visit priority: left subtree -> root node -> right subtree
let node = node.borrow();
dfs(node.left.as_ref(), res);
res.push(node.val);
dfs(node.right.as_ref(), res);
}
}
dfs(root, &mut result);
result
}
/* Postorder traversal */
fn post_order(root: Option<&Rc<RefCell<TreeNode>>>) -> Vec<i32> {
let mut result = vec![];
fn dfs(root: Option<&Rc<RefCell<TreeNode>>>, res: &mut Vec<i32>) {
if let Some(node) = root {
// Visit priority: left subtree -> right subtree -> root node
let node = node.borrow();
dfs(node.left.as_ref(), res);
dfs(node.right.as_ref(), res);
res.push(node.val);
}
}
dfs(root, &mut result);
result
}
/* Preorder traversal */
void preOrder(TreeNode *root, int *size) {
if (root == NULL)
return;
// Visit priority: root node -> left subtree -> right subtree
arr[(*size)++] = root->val;
preOrder(root->left, size);
preOrder(root->right, size);
}
/* Inorder traversal */
void inOrder(TreeNode *root, int *size) {
if (root == NULL)
return;
// Visit priority: left subtree -> root node -> right subtree
inOrder(root->left, size);
arr[(*size)++] = root->val;
inOrder(root->right, size);
}
/* Postorder traversal */
void postOrder(TreeNode *root, int *size) {
if (root == NULL)
return;
// Visit priority: left subtree -> right subtree -> root node
postOrder(root->left, size);
postOrder(root->right, size);
arr[(*size)++] = root->val;
}
/* Preorder traversal */
fun preOrder(root: TreeNode?) {
if (root == null) return
// Visit priority: root node -> left subtree -> right subtree
list.add(root._val)
preOrder(root.left)
preOrder(root.right)
}
/* Inorder traversal */
fun inOrder(root: TreeNode?) {
if (root == null) return
// Visit priority: left subtree -> root node -> right subtree
inOrder(root.left)
list.add(root._val)
inOrder(root.right)
}
/* Postorder traversal */
fun postOrder(root: TreeNode?) {
if (root == null) return
// Visit priority: left subtree -> right subtree -> root node
postOrder(root.left)
postOrder(root.right)
list.add(root._val)
}
### Pre-order traversal ###
def pre_order(root)
return if root.nil?
# Visit priority: root node -> left subtree -> right subtree
$res << root.val
pre_order(root.left)
pre_order(root.right)
end
### In-order traversal ###
def in_order(root)
return if root.nil?
# Visit priority: left subtree -> root node -> right subtree
in_order(root.left)
$res << root.val
in_order(root.right)
end
### Post-order traversal ###
def post_order(root)
return if root.nil?
# Visit priority: left subtree -> right subtree -> root node
post_order(root.left)
post_order(root.right)
$res << root.val
end
Tip
Depth-first search can also be implemented based on iteration, interested readers can study this on their own.
Figure 7-11 shows the recursive process of preorder traversal of a binary tree, which can be divided into two opposite parts: "recursion" and "return".
- "Recursion" means opening a new method, where the program accesses the next node in this process.
- "Return" means the function returns, indicating that the current node has been fully visited.
Figure 7-11 The recursive process of preorder traversal
2. Complexity Analysis¶
- Time complexity is \(O(n)\): All nodes are visited once, using \(O(n)\) time.
- Space complexity is \(O(n)\): In the worst case, i.e., the tree degenerates into a linked list, the recursion depth reaches \(n\), and the system occupies \(O(n)\) stack frame space.












