10.2 Binary Search Insertion Point¶
Binary search can not only be used to search for target elements but also to solve many variant problems, such as searching for the insertion position of a target element.
10.2.1 Case Without Duplicate Elements¶
Question
Given a sorted array nums of length \(n\) and an element target, where the array contains no duplicate elements. Insert target into the array nums while maintaining its sorted order. If the array already contains the element target, insert it to its left. Return the index of target in the array after insertion. An example is shown in Figure 10-4.
Figure 10-4 Binary search insertion point example data
If we want to reuse the binary search code from the previous section, we need to answer the following two questions.
Question 1: When the array contains target, is the insertion point index the same as that element's index?
The problem requires inserting target to the left of equal elements, which means the newly inserted target replaces the position of the original target. In other words, when the array contains target, the insertion point index is the index of that target.
Question 2: When the array does not contain target, what is the insertion point index?
Further consider the binary search process: When nums[m] < target, \(i\) moves, which means pointer \(i\) is approaching elements greater than or equal to target. Similarly, pointer \(j\) is always approaching elements less than or equal to target.
Therefore, when the binary search ends, we must have: \(i\) points to the first element greater than target, and \(j\) points to the first element less than target. It's easy to see that when the array does not contain target, the insertion index is \(i\). The code is shown below:
def binary_search_insertion_simple(nums: list[int], target: int) -> int:
"""Binary search for insertion point (no duplicate elements)"""
i, j = 0, len(nums) - 1 # Initialize closed interval [0, n-1]
while i <= j:
m = (i + j) // 2 # Calculate midpoint index m
if nums[m] < target:
i = m + 1 # target is in the interval [m+1, j]
elif nums[m] > target:
j = m - 1 # target is in the interval [i, m-1]
else:
return m # Found target, return insertion point m
# Target not found, return insertion point i
return i
/* Binary search for insertion point (no duplicate elements) */
int binarySearchInsertionSimple(vector<int> &nums, int target) {
int i = 0, j = nums.size() - 1; // Initialize closed interval [0, n-1]
while (i <= j) {
int m = i + (j - i) / 2; // Calculate the midpoint index m
if (nums[m] < target) {
i = m + 1; // target is in the interval [m+1, j]
} else if (nums[m] > target) {
j = m - 1; // target is in the interval [i, m-1]
} else {
return m; // Found target, return insertion point m
}
}
// Target not found, return insertion point i
return i;
}
/* Binary search for insertion point (no duplicate elements) */
int binarySearchInsertionSimple(int[] nums, int target) {
int i = 0, j = nums.length - 1; // Initialize closed interval [0, n-1]
while (i <= j) {
int m = i + (j - i) / 2; // Calculate the midpoint index m
if (nums[m] < target) {
i = m + 1; // target is in the interval [m+1, j]
} else if (nums[m] > target) {
j = m - 1; // target is in the interval [i, m-1]
} else {
return m; // Found target, return insertion point m
}
}
// Target not found, return insertion point i
return i;
}
/* Binary search for insertion point (no duplicate elements) */
int BinarySearchInsertionSimple(int[] nums, int target) {
int i = 0, j = nums.Length - 1; // Initialize closed interval [0, n-1]
while (i <= j) {
int m = i + (j - i) / 2; // Calculate the midpoint index m
if (nums[m] < target) {
i = m + 1; // target is in the interval [m+1, j]
} else if (nums[m] > target) {
j = m - 1; // target is in the interval [i, m-1]
} else {
return m; // Found target, return insertion point m
}
}
// Target not found, return insertion point i
return i;
}
/* Binary search for insertion point (no duplicate elements) */
func binarySearchInsertionSimple(nums []int, target int) int {
// Initialize closed interval [0, n-1]
i, j := 0, len(nums)-1
for i <= j {
// Calculate the midpoint index m
m := i + (j-i)/2
if nums[m] < target {
// target is in the interval [m+1, j]
i = m + 1
} else if nums[m] > target {
// target is in the interval [i, m-1]
j = m - 1
} else {
// Found target, return insertion point m
return m
}
}
// Target not found, return insertion point i
return i
}
/* Binary search for insertion point (no duplicate elements) */
func binarySearchInsertionSimple(nums: [Int], target: Int) -> Int {
// Initialize closed interval [0, n-1]
var i = nums.startIndex
var j = nums.endIndex - 1
while i <= j {
let m = i + (j - i) / 2 // Calculate the midpoint index m
if nums[m] < target {
i = m + 1 // target is in the interval [m+1, j]
} else if nums[m] > target {
j = m - 1 // target is in the interval [i, m-1]
} else {
return m // Found target, return insertion point m
}
}
// Target not found, return insertion point i
return i
}
/* Binary search for insertion point (no duplicate elements) */
function binarySearchInsertionSimple(nums, target) {
let i = 0,
j = nums.length - 1; // Initialize closed interval [0, n-1]
while (i <= j) {
const m = Math.floor(i + (j - i) / 2); // Calculate midpoint index m, use Math.floor() to round down
if (nums[m] < target) {
i = m + 1; // target is in the interval [m+1, j]
} else if (nums[m] > target) {
j = m - 1; // target is in the interval [i, m-1]
} else {
return m; // Found target, return insertion point m
}
}
// Target not found, return insertion point i
return i;
}
/* Binary search for insertion point (no duplicate elements) */
function binarySearchInsertionSimple(
nums: Array<number>,
target: number
): number {
let i = 0,
j = nums.length - 1; // Initialize closed interval [0, n-1]
while (i <= j) {
const m = Math.floor(i + (j - i) / 2); // Calculate midpoint index m, use Math.floor() to round down
if (nums[m] < target) {
i = m + 1; // target is in the interval [m+1, j]
} else if (nums[m] > target) {
j = m - 1; // target is in the interval [i, m-1]
} else {
return m; // Found target, return insertion point m
}
}
// Target not found, return insertion point i
return i;
}
/* Binary search for insertion point (no duplicate elements) */
int binarySearchInsertionSimple(List<int> nums, int target) {
int i = 0, j = nums.length - 1; // Initialize closed interval [0, n-1]
while (i <= j) {
int m = i + (j - i) ~/ 2; // Calculate the midpoint index m
if (nums[m] < target) {
i = m + 1; // target is in the interval [m+1, j]
} else if (nums[m] > target) {
j = m - 1; // target is in the interval [i, m-1]
} else {
return m; // Found target, return insertion point m
}
}
// Target not found, return insertion point i
return i;
}
/* Binary search for insertion point (no duplicate elements) */
fn binary_search_insertion_simple(nums: &[i32], target: i32) -> i32 {
let (mut i, mut j) = (0, nums.len() as i32 - 1); // Initialize closed interval [0, n-1]
while i <= j {
let m = i + (j - i) / 2; // Calculate the midpoint index m
if nums[m as usize] < target {
i = m + 1; // target is in the interval [m+1, j]
} else if nums[m as usize] > target {
j = m - 1; // target is in the interval [i, m-1]
} else {
return m;
}
}
// Target not found, return insertion point i
i
}
/* Binary search for insertion point (no duplicate elements) */
int binarySearchInsertionSimple(int *nums, int numSize, int target) {
int i = 0, j = numSize - 1; // Initialize closed interval [0, n-1]
while (i <= j) {
int m = i + (j - i) / 2; // Calculate the midpoint index m
if (nums[m] < target) {
i = m + 1; // target is in the interval [m+1, j]
} else if (nums[m] > target) {
j = m - 1; // target is in the interval [i, m-1]
} else {
return m; // Found target, return insertion point m
}
}
// Target not found, return insertion point i
return i;
}
/* Binary search for insertion point (no duplicate elements) */
fun binarySearchInsertionSimple(nums: IntArray, target: Int): Int {
var i = 0
var j = nums.size - 1 // Initialize closed interval [0, n-1]
while (i <= j) {
val m = i + (j - i) / 2 // Calculate the midpoint index m
if (nums[m] < target) {
i = m + 1 // target is in the interval [m+1, j]
} else if (nums[m] > target) {
j = m - 1 // target is in the interval [i, m-1]
} else {
return m // Found target, return insertion point m
}
}
// Target not found, return insertion point i
return i
}
### Binary search insertion point (no duplicates) ###
def binary_search_insertion_simple(nums, target)
# Initialize closed interval [0, n-1]
i, j = 0, nums.length - 1
while i <= j
# Calculate the midpoint index m
m = (i + j) / 2
if nums[m] < target
i = m + 1 # target is in the interval [m+1, j]
elsif nums[m] > target
j = m - 1 # target is in the interval [i, m-1]
else
return m # Found target, return insertion point m
end
end
i # Target not found, return insertion point i
end
10.2.2 Case with Duplicate Elements¶
Question
Based on the previous problem, assume the array may contain duplicate elements, with everything else remaining the same.
Suppose there are multiple target elements in the array. Ordinary binary search can only return the index of one target, and cannot determine how many target elements are to the left and right of that element.
The problem requires inserting the target element at the leftmost position, so we need to find the index of the leftmost target in the array. Initially, consider implementing this through the steps shown in Figure 10-5:
- Perform binary search to obtain the index of any
target, denoted as \(k\). - Starting from index \(k\), perform linear traversal to the left, and return when the leftmost
targetis found.
Figure 10-5 Linear search for insertion point of duplicate elements
Although this method works, it includes linear search, resulting in a time complexity of \(O(n)\). When the array contains many duplicate target elements, this method is very inefficient.
Now consider extending the binary search code. As shown in Figure 10-6, the overall process remains unchanged: calculate the midpoint index \(m\) in each round, then compare target with nums[m], divided into the following cases:
- When
nums[m] < targetornums[m] > target, it meanstargethas not been found yet, so use the ordinary binary search interval narrowing operation to make pointers \(i\) and \(j\) approachtarget. - When
nums[m] == target, it means elements less thantargetare in the interval \([i, m - 1]\), so use \(j = m - 1\) to narrow the interval, thereby making pointer \(j\) approach elements less thantarget.
After the loop completes, \(i\) points to the leftmost target, and \(j\) points to the first element less than target, so index \(i\) is the insertion point.
Figure 10-6 Steps for binary search insertion point of duplicate elements
Observe the following code: the operations for branches nums[m] > target and nums[m] == target are the same, so the two can be merged.
Even so, we can still keep the conditional branches expanded, as the logic is clearer and more readable.
def binary_search_insertion(nums: list[int], target: int) -> int:
"""Binary search for insertion point (with duplicate elements)"""
i, j = 0, len(nums) - 1 # Initialize closed interval [0, n-1]
while i <= j:
m = (i + j) // 2 # Calculate midpoint index m
if nums[m] < target:
i = m + 1 # target is in the interval [m+1, j]
elif nums[m] > target:
j = m - 1 # target is in the interval [i, m-1]
else:
j = m - 1 # The first element less than target is in the interval [i, m-1]
# Return insertion point i
return i
/* Binary search for insertion point (with duplicate elements) */
int binarySearchInsertion(vector<int> &nums, int target) {
int i = 0, j = nums.size() - 1; // Initialize closed interval [0, n-1]
while (i <= j) {
int m = i + (j - i) / 2; // Calculate the midpoint index m
if (nums[m] < target) {
i = m + 1; // target is in the interval [m+1, j]
} else if (nums[m] > target) {
j = m - 1; // target is in the interval [i, m-1]
} else {
j = m - 1; // The first element less than target is in the interval [i, m-1]
}
}
// Return insertion point i
return i;
}
/* Binary search for insertion point (with duplicate elements) */
int binarySearchInsertion(int[] nums, int target) {
int i = 0, j = nums.length - 1; // Initialize closed interval [0, n-1]
while (i <= j) {
int m = i + (j - i) / 2; // Calculate the midpoint index m
if (nums[m] < target) {
i = m + 1; // target is in the interval [m+1, j]
} else if (nums[m] > target) {
j = m - 1; // target is in the interval [i, m-1]
} else {
j = m - 1; // The first element less than target is in the interval [i, m-1]
}
}
// Return insertion point i
return i;
}
/* Binary search for insertion point (with duplicate elements) */
int BinarySearchInsertion(int[] nums, int target) {
int i = 0, j = nums.Length - 1; // Initialize closed interval [0, n-1]
while (i <= j) {
int m = i + (j - i) / 2; // Calculate the midpoint index m
if (nums[m] < target) {
i = m + 1; // target is in the interval [m+1, j]
} else if (nums[m] > target) {
j = m - 1; // target is in the interval [i, m-1]
} else {
j = m - 1; // The first element less than target is in the interval [i, m-1]
}
}
// Return insertion point i
return i;
}
/* Binary search for insertion point (with duplicate elements) */
func binarySearchInsertion(nums []int, target int) int {
// Initialize closed interval [0, n-1]
i, j := 0, len(nums)-1
for i <= j {
// Calculate the midpoint index m
m := i + (j-i)/2
if nums[m] < target {
// target is in the interval [m+1, j]
i = m + 1
} else if nums[m] > target {
// target is in the interval [i, m-1]
j = m - 1
} else {
// The first element less than target is in the interval [i, m-1]
j = m - 1
}
}
// Return insertion point i
return i
}
/* Binary search for insertion point (with duplicate elements) */
func binarySearchInsertion(nums: [Int], target: Int) -> Int {
// Initialize closed interval [0, n-1]
var i = nums.startIndex
var j = nums.endIndex - 1
while i <= j {
let m = i + (j - i) / 2 // Calculate the midpoint index m
if nums[m] < target {
i = m + 1 // target is in the interval [m+1, j]
} else if nums[m] > target {
j = m - 1 // target is in the interval [i, m-1]
} else {
j = m - 1 // The first element less than target is in the interval [i, m-1]
}
}
// Return insertion point i
return i
}
/* Binary search for insertion point (with duplicate elements) */
function binarySearchInsertion(nums, target) {
let i = 0,
j = nums.length - 1; // Initialize closed interval [0, n-1]
while (i <= j) {
const m = Math.floor(i + (j - i) / 2); // Calculate midpoint index m, use Math.floor() to round down
if (nums[m] < target) {
i = m + 1; // target is in the interval [m+1, j]
} else if (nums[m] > target) {
j = m - 1; // target is in the interval [i, m-1]
} else {
j = m - 1; // The first element less than target is in the interval [i, m-1]
}
}
// Return insertion point i
return i;
}
/* Binary search for insertion point (with duplicate elements) */
function binarySearchInsertion(nums: Array<number>, target: number): number {
let i = 0,
j = nums.length - 1; // Initialize closed interval [0, n-1]
while (i <= j) {
const m = Math.floor(i + (j - i) / 2); // Calculate midpoint index m, use Math.floor() to round down
if (nums[m] < target) {
i = m + 1; // target is in the interval [m+1, j]
} else if (nums[m] > target) {
j = m - 1; // target is in the interval [i, m-1]
} else {
j = m - 1; // The first element less than target is in the interval [i, m-1]
}
}
// Return insertion point i
return i;
}
/* Binary search for insertion point (with duplicate elements) */
int binarySearchInsertion(List<int> nums, int target) {
int i = 0, j = nums.length - 1; // Initialize closed interval [0, n-1]
while (i <= j) {
int m = i + (j - i) ~/ 2; // Calculate the midpoint index m
if (nums[m] < target) {
i = m + 1; // target is in the interval [m+1, j]
} else if (nums[m] > target) {
j = m - 1; // target is in the interval [i, m-1]
} else {
j = m - 1; // The first element less than target is in the interval [i, m-1]
}
}
// Return insertion point i
return i;
}
/* Binary search for insertion point (with duplicate elements) */
pub fn binary_search_insertion(nums: &[i32], target: i32) -> i32 {
let (mut i, mut j) = (0, nums.len() as i32 - 1); // Initialize closed interval [0, n-1]
while i <= j {
let m = i + (j - i) / 2; // Calculate the midpoint index m
if nums[m as usize] < target {
i = m + 1; // target is in the interval [m+1, j]
} else if nums[m as usize] > target {
j = m - 1; // target is in the interval [i, m-1]
} else {
j = m - 1; // The first element less than target is in the interval [i, m-1]
}
}
// Return insertion point i
i
}
/* Binary search for insertion point (with duplicate elements) */
int binarySearchInsertion(int *nums, int numSize, int target) {
int i = 0, j = numSize - 1; // Initialize closed interval [0, n-1]
while (i <= j) {
int m = i + (j - i) / 2; // Calculate the midpoint index m
if (nums[m] < target) {
i = m + 1; // target is in the interval [m+1, j]
} else if (nums[m] > target) {
j = m - 1; // target is in the interval [i, m-1]
} else {
j = m - 1; // The first element less than target is in the interval [i, m-1]
}
}
// Return insertion point i
return i;
}
/* Binary search for insertion point (with duplicate elements) */
fun binarySearchInsertion(nums: IntArray, target: Int): Int {
var i = 0
var j = nums.size - 1 // Initialize closed interval [0, n-1]
while (i <= j) {
val m = i + (j - i) / 2 // Calculate the midpoint index m
if (nums[m] < target) {
i = m + 1 // target is in the interval [m+1, j]
} else if (nums[m] > target) {
j = m - 1 // target is in the interval [i, m-1]
} else {
j = m - 1 // The first element less than target is in the interval [i, m-1]
}
}
// Return insertion point i
return i
}
### Binary search insertion point (with duplicates) ###
def binary_search_insertion(nums, target)
# Initialize closed interval [0, n-1]
i, j = 0, nums.length - 1
while i <= j
# Calculate the midpoint index m
m = (i + j) / 2
if nums[m] < target
i = m + 1 # target is in the interval [m+1, j]
elsif nums[m] > target
j = m - 1 # target is in the interval [i, m-1]
else
j = m - 1 # The first element less than target is in the interval [i, m-1]
end
end
i # Return insertion point i
end
Tip
The code in this section all uses the "closed interval" approach. Interested readers can implement the "left-closed right-open" approach themselves.
Overall, binary search is simply about setting search targets for pointers \(i\) and \(j\) separately. The target could be a specific element (such as target) or a range of elements (such as elements less than target).
Through continuous binary iterations, both pointers \(i\) and \(j\) gradually approach their preset targets. Ultimately, they either successfully find the answer or stop after crossing the boundaries.









