9.3 Graph Traversal¶
Trees represent "one-to-many" relationships, while graphs have a higher degree of freedom and can represent any "many-to-many" relationships. Therefore, we can view trees as a special case of graphs. Clearly, tree traversal operations are also a special case of graph traversal operations.
Both graphs and trees require the application of search algorithms to implement traversal operations. Graph traversal methods can also be divided into two types: breadth-first traversal and depth-first traversal.
9.3.1 Breadth-First Search¶
Breadth-first search is a near-to-far traversal method that, starting from a certain node, always prioritizes visiting the nearest vertices and expands outward layer by layer. As shown in Figure 9-9, starting from the top-left vertex, first traverse all adjacent vertices of that vertex, then traverse all adjacent vertices of the next vertex, and so on, until all vertices have been visited.
Figure 9-9 Breadth-first search of a graph
1. Algorithm Implementation¶
BFS is typically implemented with the help of a queue, as shown in the code below. The queue has a "first in, first out" property, which aligns with the BFS idea of "near to far".
- Add the starting vertex
startVetto the queue and begin the loop. - In each iteration of the loop, pop the vertex at the front of the queue and record it as visited, then add all adjacent vertices of that vertex to the back of the queue.
- Repeat step
2.until all vertices have been visited.
To prevent revisiting vertices, we use a hash set visited to record which nodes have been visited.
Tip
A hash set can be viewed as a hash table that stores only key without storing value. It can perform addition, deletion, lookup, and modification operations on key in \(O(1)\) time complexity. Based on the uniqueness of key, hash sets are typically used for data deduplication and similar scenarios.
def graph_bfs(graph: GraphAdjList, start_vet: Vertex) -> list[Vertex]:
"""Breadth-first traversal"""
# Use adjacency list to represent the graph, in order to obtain all adjacent vertices of a specified vertex
# Vertex traversal sequence
res = []
# Hash set for recording vertices that have been visited
visited = set[Vertex]([start_vet])
# Queue used to implement BFS
que = deque[Vertex]([start_vet])
# Starting from vertex vet, loop until all vertices are visited
while len(que) > 0:
vet = que.popleft() # Dequeue the front vertex
res.append(vet) # Record visited vertex
# Traverse all adjacent vertices of this vertex
for adj_vet in graph.adj_list[vet]:
if adj_vet in visited:
continue # Skip vertices that have been visited
que.append(adj_vet) # Only enqueue unvisited vertices
visited.add(adj_vet) # Mark this vertex as visited
# Return vertex traversal sequence
return res
/* Breadth-first traversal */
// Use adjacency list to represent the graph, in order to obtain all adjacent vertices of a specified vertex
vector<Vertex *> graphBFS(GraphAdjList &graph, Vertex *startVet) {
// Vertex traversal sequence
vector<Vertex *> res;
// Hash set for recording vertices that have been visited
unordered_set<Vertex *> visited = {startVet};
// Queue used to implement BFS
queue<Vertex *> que;
que.push(startVet);
// Starting from vertex vet, loop until all vertices are visited
while (!que.empty()) {
Vertex *vet = que.front();
que.pop(); // Dequeue the front vertex
res.push_back(vet); // Record visited vertex
// Traverse all adjacent vertices of this vertex
for (auto adjVet : graph.adjList[vet]) {
if (visited.count(adjVet))
continue; // Skip vertices that have been visited
que.push(adjVet); // Only enqueue unvisited vertices
visited.emplace(adjVet); // Mark this vertex as visited
}
}
// Return vertex traversal sequence
return res;
}
/* Breadth-first traversal */
// Use adjacency list to represent the graph, in order to obtain all adjacent vertices of a specified vertex
List<Vertex> graphBFS(GraphAdjList graph, Vertex startVet) {
// Vertex traversal sequence
List<Vertex> res = new ArrayList<>();
// Hash set for recording vertices that have been visited
Set<Vertex> visited = new HashSet<>();
visited.add(startVet);
// Queue used to implement BFS
Queue<Vertex> que = new LinkedList<>();
que.offer(startVet);
// Starting from vertex vet, loop until all vertices are visited
while (!que.isEmpty()) {
Vertex vet = que.poll(); // Dequeue the front vertex
res.add(vet); // Record visited vertex
// Traverse all adjacent vertices of this vertex
for (Vertex adjVet : graph.adjList.get(vet)) {
if (visited.contains(adjVet))
continue; // Skip vertices that have been visited
que.offer(adjVet); // Only enqueue unvisited vertices
visited.add(adjVet); // Mark this vertex as visited
}
}
// Return vertex traversal sequence
return res;
}
/* Breadth-first traversal */
// Use adjacency list to represent the graph, in order to obtain all adjacent vertices of a specified vertex
List<Vertex> GraphBFS(GraphAdjList graph, Vertex startVet) {
// Vertex traversal sequence
List<Vertex> res = [];
// Hash set for recording vertices that have been visited
HashSet<Vertex> visited = [startVet];
// Queue used to implement BFS
Queue<Vertex> que = new();
que.Enqueue(startVet);
// Starting from vertex vet, loop until all vertices are visited
while (que.Count > 0) {
Vertex vet = que.Dequeue(); // Dequeue the front vertex
res.Add(vet); // Record visited vertex
foreach (Vertex adjVet in graph.adjList[vet]) {
if (visited.Contains(adjVet)) {
continue; // Skip vertices that have been visited
}
que.Enqueue(adjVet); // Only enqueue unvisited vertices
visited.Add(adjVet); // Mark this vertex as visited
}
}
// Return vertex traversal sequence
return res;
}
/* Breadth-first traversal */
// Use adjacency list to represent the graph, in order to obtain all adjacent vertices of a specified vertex
func graphBFS(g *graphAdjList, startVet Vertex) []Vertex {
// Vertex traversal sequence
res := make([]Vertex, 0)
// Hash set for recording vertices that have been visited
visited := make(map[Vertex]struct{})
visited[startVet] = struct{}{}
// Queue used to implement BFS, using slice to simulate queue
queue := make([]Vertex, 0)
queue = append(queue, startVet)
// Starting from vertex vet, loop until all vertices are visited
for len(queue) > 0 {
// Dequeue the front vertex
vet := queue[0]
queue = queue[1:]
// Record visited vertex
res = append(res, vet)
// Traverse all adjacent vertices of this vertex
for _, adjVet := range g.adjList[vet] {
_, isExist := visited[adjVet]
// Only enqueue unvisited vertices
if !isExist {
queue = append(queue, adjVet)
visited[adjVet] = struct{}{}
}
}
}
// Return vertex traversal sequence
return res
}
/* Breadth-first traversal */
// Use adjacency list to represent the graph, in order to obtain all adjacent vertices of a specified vertex
func graphBFS(graph: GraphAdjList, startVet: Vertex) -> [Vertex] {
// Vertex traversal sequence
var res: [Vertex] = []
// Hash set for recording vertices that have been visited
var visited: Set<Vertex> = [startVet]
// Queue used to implement BFS
var que: [Vertex] = [startVet]
// Starting from vertex vet, loop until all vertices are visited
while !que.isEmpty {
let vet = que.removeFirst() // Dequeue the front vertex
res.append(vet) // Record visited vertex
// Traverse all adjacent vertices of this vertex
for adjVet in graph.adjList[vet] ?? [] {
if visited.contains(adjVet) {
continue // Skip vertices that have been visited
}
que.append(adjVet) // Only enqueue unvisited vertices
visited.insert(adjVet) // Mark this vertex as visited
}
}
// Return vertex traversal sequence
return res
}
/* Breadth-first traversal */
// Use adjacency list to represent the graph, in order to obtain all adjacent vertices of a specified vertex
function graphBFS(graph, startVet) {
// Vertex traversal sequence
const res = [];
// Hash set for recording vertices that have been visited
const visited = new Set();
visited.add(startVet);
// Queue used to implement BFS
const que = [startVet];
// Starting from vertex vet, loop until all vertices are visited
while (que.length) {
const vet = que.shift(); // Dequeue the front vertex
res.push(vet); // Record visited vertex
// Traverse all adjacent vertices of this vertex
for (const adjVet of graph.adjList.get(vet) ?? []) {
if (visited.has(adjVet)) {
continue; // Skip vertices that have been visited
}
que.push(adjVet); // Only enqueue unvisited vertices
visited.add(adjVet); // Mark this vertex as visited
}
}
// Return vertex traversal sequence
return res;
}
/* Breadth-first traversal */
// Use adjacency list to represent the graph, in order to obtain all adjacent vertices of a specified vertex
function graphBFS(graph: GraphAdjList, startVet: Vertex): Vertex[] {
// Vertex traversal sequence
const res: Vertex[] = [];
// Hash set for recording vertices that have been visited
const visited: Set<Vertex> = new Set();
visited.add(startVet);
// Queue used to implement BFS
const que = [startVet];
// Starting from vertex vet, loop until all vertices are visited
while (que.length) {
const vet = que.shift(); // Dequeue the front vertex
res.push(vet); // Record visited vertex
// Traverse all adjacent vertices of this vertex
for (const adjVet of graph.adjList.get(vet) ?? []) {
if (visited.has(adjVet)) {
continue; // Skip vertices that have been visited
}
que.push(adjVet); // Only enqueue unvisited
visited.add(adjVet); // Mark this vertex as visited
}
}
// Return vertex traversal sequence
return res;
}
/* Breadth-first traversal */
List<Vertex> graphBFS(GraphAdjList graph, Vertex startVet) {
// Use adjacency list to represent the graph, in order to obtain all adjacent vertices of a specified vertex
// Vertex traversal sequence
List<Vertex> res = [];
// Hash set for recording vertices that have been visited
Set<Vertex> visited = {};
visited.add(startVet);
// Queue used to implement BFS
Queue<Vertex> que = Queue();
que.add(startVet);
// Starting from vertex vet, loop until all vertices are visited
while (que.isNotEmpty) {
Vertex vet = que.removeFirst(); // Dequeue the front vertex
res.add(vet); // Record visited vertex
// Traverse all adjacent vertices of this vertex
for (Vertex adjVet in graph.adjList[vet]!) {
if (visited.contains(adjVet)) {
continue; // Skip vertices that have been visited
}
que.add(adjVet); // Only enqueue unvisited vertices
visited.add(adjVet); // Mark this vertex as visited
}
}
// Return vertex traversal sequence
return res;
}
/* Breadth-first traversal */
// Use adjacency list to represent the graph, in order to obtain all adjacent vertices of a specified vertex
fn graph_bfs(graph: GraphAdjList, start_vet: Vertex) -> Vec<Vertex> {
// Vertex traversal sequence
let mut res = vec![];
// Hash set for recording vertices that have been visited
let mut visited = HashSet::new();
visited.insert(start_vet);
// Queue used to implement BFS
let mut que = VecDeque::new();
que.push_back(start_vet);
// Starting from vertex vet, loop until all vertices are visited
while let Some(vet) = que.pop_front() {
res.push(vet); // Record visited vertex
// Traverse all adjacent vertices of this vertex
if let Some(adj_vets) = graph.adj_list.get(&vet) {
for &adj_vet in adj_vets {
if visited.contains(&adj_vet) {
continue; // Skip vertices that have been visited
}
que.push_back(adj_vet); // Only enqueue unvisited vertices
visited.insert(adj_vet); // Mark this vertex as visited
}
}
}
// Return vertex traversal sequence
res
}
/* Node queue structure */
typedef struct {
Vertex *vertices[MAX_SIZE];
int front, rear, size;
} Queue;
/* Constructor */
Queue *newQueue() {
Queue *q = (Queue *)malloc(sizeof(Queue));
q->front = q->rear = q->size = 0;
return q;
}
/* Check if the queue is empty */
int isEmpty(Queue *q) {
return q->size == 0;
}
/* Enqueue operation */
void enqueue(Queue *q, Vertex *vet) {
q->vertices[q->rear] = vet;
q->rear = (q->rear + 1) % MAX_SIZE;
q->size++;
}
/* Dequeue operation */
Vertex *dequeue(Queue *q) {
Vertex *vet = q->vertices[q->front];
q->front = (q->front + 1) % MAX_SIZE;
q->size--;
return vet;
}
/* Check if vertex has been visited */
int isVisited(Vertex **visited, int size, Vertex *vet) {
// Traverse to find node using O(n) time
for (int i = 0; i < size; i++) {
if (visited[i] == vet)
return 1;
}
return 0;
}
/* Breadth-first traversal */
// Use adjacency list to represent the graph, in order to obtain all adjacent vertices of a specified vertex
void graphBFS(GraphAdjList *graph, Vertex *startVet, Vertex **res, int *resSize, Vertex **visited, int *visitedSize) {
// Queue used to implement BFS
Queue *queue = newQueue();
enqueue(queue, startVet);
visited[(*visitedSize)++] = startVet;
// Starting from vertex vet, loop until all vertices are visited
while (!isEmpty(queue)) {
Vertex *vet = dequeue(queue); // Dequeue the front vertex
res[(*resSize)++] = vet; // Record visited vertex
// Traverse all adjacent vertices of this vertex
AdjListNode *node = findNode(graph, vet);
while (node != NULL) {
// Skip vertices that have been visited
if (!isVisited(visited, *visitedSize, node->vertex)) {
enqueue(queue, node->vertex); // Only enqueue unvisited vertices
visited[(*visitedSize)++] = node->vertex; // Mark this vertex as visited
}
node = node->next;
}
}
// Free memory
free(queue);
}
/* Breadth-first traversal */
// Use adjacency list to represent the graph, in order to obtain all adjacent vertices of a specified vertex
fun graphBFS(graph: GraphAdjList, startVet: Vertex): MutableList<Vertex?> {
// Vertex traversal sequence
val res = mutableListOf<Vertex?>()
// Hash set for recording vertices that have been visited
val visited = HashSet<Vertex>()
visited.add(startVet)
// Queue used to implement BFS
val que = LinkedList<Vertex>()
que.offer(startVet)
// Starting from vertex vet, loop until all vertices are visited
while (!que.isEmpty()) {
val vet = que.poll() // Dequeue the front vertex
res.add(vet) // Record visited vertex
// Traverse all adjacent vertices of this vertex
for (adjVet in graph.adjList[vet]!!) {
if (visited.contains(adjVet))
continue // Skip vertices that have been visited
que.offer(adjVet) // Only enqueue unvisited vertices
visited.add(adjVet) // Mark this vertex as visited
}
}
// Return vertex traversal sequence
return res
}
### Breadth-first traversal ###
def graph_bfs(graph, start_vet)
# Use adjacency list to represent the graph, in order to obtain all adjacent vertices of a specified vertex
# Vertex traversal sequence
res = []
# Hash set for recording vertices that have been visited
visited = Set.new([start_vet])
# Queue used to implement BFS
que = [start_vet]
# Starting from vertex vet, loop until all vertices are visited
while que.length > 0
vet = que.shift # Dequeue the front vertex
res << vet # Record visited vertex
# Traverse all adjacent vertices of this vertex
for adj_vet in graph.adj_list[vet]
next if visited.include?(adj_vet) # Skip vertices that have been visited
que << adj_vet # Only enqueue unvisited vertices
visited.add(adj_vet) # Mark this vertex as visited
end
end
# Return vertex traversal sequence
res
end
The code is relatively abstract; it is recommended to refer to Figure 9-10 to deepen understanding.
Figure 9-10 Steps of breadth-first search of a graph
Is the breadth-first traversal sequence unique?
Not unique. Breadth-first search only requires traversing in a "near to far" order, and the traversal order of vertices at the same distance can be arbitrarily shuffled. Taking Figure 9-10 as an example, the visit order of vertices \(1\) and \(3\) can be swapped, as can the visit order of vertices \(2\), \(4\), and \(6\).
2. Complexity Analysis¶
Time complexity: All vertices will be enqueued and dequeued once, using \(O(|V|)\) time; in the process of traversing adjacent vertices, since it is an undirected graph, all edges will be visited \(2\) times, using \(O(2|E|)\) time; overall using \(O(|V| + |E|)\) time.
Space complexity: The list res, hash set visited, and queue que can contain at most \(|V|\) vertices, using \(O(|V|)\) space.
9.3.2 Depth-First Search¶
Depth-first search is a traversal method that prioritizes going as far as possible, then backtracks when no path remains. As shown in Figure 9-11, starting from the top-left vertex, visit an adjacent vertex of the current vertex, continuing until reaching a dead end, then return and continue going as far as possible before returning again, and so on, until all vertices have been traversed.
Figure 9-11 Depth-first search of a graph
1. Algorithm Implementation¶
This "go as far as possible then return" algorithm paradigm is typically implemented using recursion. Similar to breadth-first search, in depth-first search we also need a hash set visited to record visited vertices and avoid revisiting.
def dfs(graph: GraphAdjList, visited: set[Vertex], res: list[Vertex], vet: Vertex):
"""Depth-first traversal helper function"""
res.append(vet) # Record visited vertex
visited.add(vet) # Mark this vertex as visited
# Traverse all adjacent vertices of this vertex
for adjVet in graph.adj_list[vet]:
if adjVet in visited:
continue # Skip vertices that have been visited
# Recursively visit adjacent vertices
dfs(graph, visited, res, adjVet)
def graph_dfs(graph: GraphAdjList, start_vet: Vertex) -> list[Vertex]:
"""Depth-first traversal"""
# Use adjacency list to represent the graph, in order to obtain all adjacent vertices of a specified vertex
# Vertex traversal sequence
res = []
# Hash set for recording vertices that have been visited
visited = set[Vertex]()
dfs(graph, visited, res, start_vet)
return res
/* Depth-first traversal helper function */
void dfs(GraphAdjList &graph, unordered_set<Vertex *> &visited, vector<Vertex *> &res, Vertex *vet) {
res.push_back(vet); // Record visited vertex
visited.emplace(vet); // Mark this vertex as visited
// Traverse all adjacent vertices of this vertex
for (Vertex *adjVet : graph.adjList[vet]) {
if (visited.count(adjVet))
continue; // Skip vertices that have been visited
// Recursively visit adjacent vertices
dfs(graph, visited, res, adjVet);
}
}
/* Depth-first traversal */
// Use adjacency list to represent the graph, in order to obtain all adjacent vertices of a specified vertex
vector<Vertex *> graphDFS(GraphAdjList &graph, Vertex *startVet) {
// Vertex traversal sequence
vector<Vertex *> res;
// Hash set for recording vertices that have been visited
unordered_set<Vertex *> visited;
dfs(graph, visited, res, startVet);
return res;
}
/* Depth-first traversal helper function */
void dfs(GraphAdjList graph, Set<Vertex> visited, List<Vertex> res, Vertex vet) {
res.add(vet); // Record visited vertex
visited.add(vet); // Mark this vertex as visited
// Traverse all adjacent vertices of this vertex
for (Vertex adjVet : graph.adjList.get(vet)) {
if (visited.contains(adjVet))
continue; // Skip vertices that have been visited
// Recursively visit adjacent vertices
dfs(graph, visited, res, adjVet);
}
}
/* Depth-first traversal */
// Use adjacency list to represent the graph, in order to obtain all adjacent vertices of a specified vertex
List<Vertex> graphDFS(GraphAdjList graph, Vertex startVet) {
// Vertex traversal sequence
List<Vertex> res = new ArrayList<>();
// Hash set for recording vertices that have been visited
Set<Vertex> visited = new HashSet<>();
dfs(graph, visited, res, startVet);
return res;
}
/* Depth-first traversal helper function */
void DFS(GraphAdjList graph, HashSet<Vertex> visited, List<Vertex> res, Vertex vet) {
res.Add(vet); // Record visited vertex
visited.Add(vet); // Mark this vertex as visited
// Traverse all adjacent vertices of this vertex
foreach (Vertex adjVet in graph.adjList[vet]) {
if (visited.Contains(adjVet)) {
continue; // Skip vertices that have been visited
}
// Recursively visit adjacent vertices
DFS(graph, visited, res, adjVet);
}
}
/* Depth-first traversal */
// Use adjacency list to represent the graph, in order to obtain all adjacent vertices of a specified vertex
List<Vertex> GraphDFS(GraphAdjList graph, Vertex startVet) {
// Vertex traversal sequence
List<Vertex> res = [];
// Hash set for recording vertices that have been visited
HashSet<Vertex> visited = [];
DFS(graph, visited, res, startVet);
return res;
}
/* Depth-first traversal helper function */
func dfs(g *graphAdjList, visited map[Vertex]struct{}, res *[]Vertex, vet Vertex) {
// append operation returns a new reference, must reassign original reference to new slice's reference
*res = append(*res, vet)
visited[vet] = struct{}{}
// Traverse all adjacent vertices of this vertex
for _, adjVet := range g.adjList[vet] {
_, isExist := visited[adjVet]
// Recursively visit adjacent vertices
if !isExist {
dfs(g, visited, res, adjVet)
}
}
}
/* Depth-first traversal */
// Use adjacency list to represent the graph, in order to obtain all adjacent vertices of a specified vertex
func graphDFS(g *graphAdjList, startVet Vertex) []Vertex {
// Vertex traversal sequence
res := make([]Vertex, 0)
// Hash set for recording vertices that have been visited
visited := make(map[Vertex]struct{})
dfs(g, visited, &res, startVet)
// Return vertex traversal sequence
return res
}
/* Depth-first traversal helper function */
func dfs(graph: GraphAdjList, visited: inout Set<Vertex>, res: inout [Vertex], vet: Vertex) {
res.append(vet) // Record visited vertex
visited.insert(vet) // Mark this vertex as visited
// Traverse all adjacent vertices of this vertex
for adjVet in graph.adjList[vet] ?? [] {
if visited.contains(adjVet) {
continue // Skip vertices that have been visited
}
// Recursively visit adjacent vertices
dfs(graph: graph, visited: &visited, res: &res, vet: adjVet)
}
}
/* Depth-first traversal */
// Use adjacency list to represent the graph, in order to obtain all adjacent vertices of a specified vertex
func graphDFS(graph: GraphAdjList, startVet: Vertex) -> [Vertex] {
// Vertex traversal sequence
var res: [Vertex] = []
// Hash set for recording vertices that have been visited
var visited: Set<Vertex> = []
dfs(graph: graph, visited: &visited, res: &res, vet: startVet)
return res
}
/* Depth-first traversal */
// Use adjacency list to represent the graph, in order to obtain all adjacent vertices of a specified vertex
function dfs(graph, visited, res, vet) {
res.push(vet); // Record visited vertex
visited.add(vet); // Mark this vertex as visited
// Traverse all adjacent vertices of this vertex
for (const adjVet of graph.adjList.get(vet)) {
if (visited.has(adjVet)) {
continue; // Skip vertices that have been visited
}
// Recursively visit adjacent vertices
dfs(graph, visited, res, adjVet);
}
}
/* Depth-first traversal */
// Use adjacency list to represent the graph, in order to obtain all adjacent vertices of a specified vertex
function graphDFS(graph, startVet) {
// Vertex traversal sequence
const res = [];
// Hash set for recording vertices that have been visited
const visited = new Set();
dfs(graph, visited, res, startVet);
return res;
}
/* Depth-first traversal helper function */
function dfs(
graph: GraphAdjList,
visited: Set<Vertex>,
res: Vertex[],
vet: Vertex
): void {
res.push(vet); // Record visited vertex
visited.add(vet); // Mark this vertex as visited
// Traverse all adjacent vertices of this vertex
for (const adjVet of graph.adjList.get(vet)) {
if (visited.has(adjVet)) {
continue; // Skip vertices that have been visited
}
// Recursively visit adjacent vertices
dfs(graph, visited, res, adjVet);
}
}
/* Depth-first traversal */
// Use adjacency list to represent the graph, in order to obtain all adjacent vertices of a specified vertex
function graphDFS(graph: GraphAdjList, startVet: Vertex): Vertex[] {
// Vertex traversal sequence
const res: Vertex[] = [];
// Hash set for recording vertices that have been visited
const visited: Set<Vertex> = new Set();
dfs(graph, visited, res, startVet);
return res;
}
/* Depth-first traversal helper function */
void dfs(
GraphAdjList graph,
Set<Vertex> visited,
List<Vertex> res,
Vertex vet,
) {
res.add(vet); // Record visited vertex
visited.add(vet); // Mark this vertex as visited
// Traverse all adjacent vertices of this vertex
for (Vertex adjVet in graph.adjList[vet]!) {
if (visited.contains(adjVet)) {
continue; // Skip vertices that have been visited
}
// Recursively visit adjacent vertices
dfs(graph, visited, res, adjVet);
}
}
/* Depth-first traversal */
List<Vertex> graphDFS(GraphAdjList graph, Vertex startVet) {
// Vertex traversal sequence
List<Vertex> res = [];
// Hash set for recording vertices that have been visited
Set<Vertex> visited = {};
dfs(graph, visited, res, startVet);
return res;
}
/* Depth-first traversal helper function */
fn dfs(graph: &GraphAdjList, visited: &mut HashSet<Vertex>, res: &mut Vec<Vertex>, vet: Vertex) {
res.push(vet); // Record visited vertex
visited.insert(vet); // Mark this vertex as visited
// Traverse all adjacent vertices of this vertex
if let Some(adj_vets) = graph.adj_list.get(&vet) {
for &adj_vet in adj_vets {
if visited.contains(&adj_vet) {
continue; // Skip vertices that have been visited
}
// Recursively visit adjacent vertices
dfs(graph, visited, res, adj_vet);
}
}
}
/* Depth-first traversal */
// Use adjacency list to represent the graph, in order to obtain all adjacent vertices of a specified vertex
fn graph_dfs(graph: GraphAdjList, start_vet: Vertex) -> Vec<Vertex> {
// Vertex traversal sequence
let mut res = vec![];
// Hash set for recording vertices that have been visited
let mut visited = HashSet::new();
dfs(&graph, &mut visited, &mut res, start_vet);
res
}
/* Check if vertex has been visited */
int isVisited(Vertex **res, int size, Vertex *vet) {
// Traverse to find node using O(n) time
for (int i = 0; i < size; i++) {
if (res[i] == vet) {
return 1;
}
}
return 0;
}
/* Depth-first traversal helper function */
void dfs(GraphAdjList *graph, Vertex **res, int *resSize, Vertex *vet) {
// Record visited vertex
res[(*resSize)++] = vet;
// Traverse all adjacent vertices of this vertex
AdjListNode *node = findNode(graph, vet);
while (node != NULL) {
// Skip vertices that have been visited
if (!isVisited(res, *resSize, node->vertex)) {
// Recursively visit adjacent vertices
dfs(graph, res, resSize, node->vertex);
}
node = node->next;
}
}
/* Depth-first traversal */
// Use adjacency list to represent the graph, in order to obtain all adjacent vertices of a specified vertex
void graphDFS(GraphAdjList *graph, Vertex *startVet, Vertex **res, int *resSize) {
dfs(graph, res, resSize, startVet);
}
/* Depth-first traversal helper function */
fun dfs(
graph: GraphAdjList,
visited: MutableSet<Vertex?>,
res: MutableList<Vertex?>,
vet: Vertex?
) {
res.add(vet) // Record visited vertex
visited.add(vet) // Mark this vertex as visited
// Traverse all adjacent vertices of this vertex
for (adjVet in graph.adjList[vet]!!) {
if (visited.contains(adjVet))
continue // Skip vertices that have been visited
// Recursively visit adjacent vertices
dfs(graph, visited, res, adjVet)
}
}
/* Depth-first traversal */
// Use adjacency list to represent the graph, in order to obtain all adjacent vertices of a specified vertex
fun graphDFS(graph: GraphAdjList, startVet: Vertex?): MutableList<Vertex?> {
// Vertex traversal sequence
val res = mutableListOf<Vertex?>()
// Hash set for recording vertices that have been visited
val visited = HashSet<Vertex?>()
dfs(graph, visited, res, startVet)
return res
}
### Depth-first traversal helper function ###
def dfs(graph, visited, res, vet)
res << vet # Record visited vertex
visited.add(vet) # Mark this vertex as visited
# Traverse all adjacent vertices of this vertex
for adj_vet in graph.adj_list[vet]
next if visited.include?(adj_vet) # Skip vertices that have been visited
# Recursively visit adjacent vertices
dfs(graph, visited, res, adj_vet)
end
end
### Depth-first traversal ###
def graph_dfs(graph, start_vet)
# Use adjacency list to represent the graph, in order to obtain all adjacent vertices of a specified vertex
# Vertex traversal sequence
res = []
# Hash set for recording vertices that have been visited
visited = Set.new
dfs(graph, visited, res, start_vet)
res
end
The algorithm flow of depth-first search is shown in Figure 9-12.
- Straight dashed lines represent downward recursion, indicating that a new recursive method has been initiated to visit a new vertex.
- Curved dashed lines represent upward backtracking, indicating that this recursive method has returned to the position where it was initiated.
To deepen understanding, it is recommended to combine Figure 9-12 with the code to mentally simulate (or draw out) the entire DFS process, including when each recursive method is initiated and when it returns.
Figure 9-12 Steps of depth-first search of a graph
Is the depth-first traversal sequence unique?
Similar to breadth-first search, the order of depth-first traversal sequences is also not unique. Given a certain vertex, exploring in any direction first is valid, meaning the order of adjacent vertices can be arbitrarily shuffled, all being depth-first search.
Taking tree traversal as an example, "root \(\rightarrow\) left \(\rightarrow\) right", "left \(\rightarrow\) root \(\rightarrow\) right", and "left \(\rightarrow\) right \(\rightarrow\) root" correspond to pre-order, in-order, and post-order traversals, respectively. They represent three different traversal priorities, yet all three belong to depth-first search.
2. Complexity Analysis¶
Time complexity: All vertices will be visited \(1\) time, using \(O(|V|)\) time; all edges will be visited \(2\) times, using \(O(2|E|)\) time; overall using \(O(|V| + |E|)\) time.
Space complexity: The list res and hash set visited can contain at most \(|V|\) vertices, and the maximum recursion depth is \(|V|\), therefore using \(O(|V|)\) space.























