14.5 Unbounded knapsack problem¶
In this section, we first solve another common knapsack problem: the unbounded knapsack, and then explore a special case of it: the coin change problem.
14.5.1 Unbounded knapsack problem¶
Question
Given
Figure 14-22 Example data for the unbounded knapsack problem
1. Dynamic programming approach¶
The unbounded knapsack problem is very similar to the 0-1 knapsack problem, the only difference being that there is no limit on the number of times an item can be chosen.
- In the 0-1 knapsack problem, there is only one of each item, so after placing item
into the backpack, you can only choose from the previous items. - In the unbounded knapsack problem, the quantity of each item is unlimited, so after placing item
in the backpack, you can still choose from the previous items.
Under the rules of the unbounded knapsack problem, the state
- Not putting item
in: As with the 0-1 knapsack problem, transition to . - Putting item
in: Unlike the 0-1 knapsack problem, transition to .
The state transition equation thus becomes:
2. Code implementation¶
Comparing the code for the two problems, the state transition changes from
def unbounded_knapsack_dp(wgt: list[int], val: list[int], cap: int) -> int:
"""Complete knapsack: Dynamic programming"""
n = len(wgt)
# Initialize dp table
dp = [[0] * (cap + 1) for _ in range(n + 1)]
# State transition
for i in range(1, n + 1):
for c in range(1, cap + 1):
if wgt[i - 1] > c:
# If exceeding the knapsack capacity, do not choose item i
dp[i][c] = dp[i - 1][c]
else:
# The greater value between not choosing and choosing item i
dp[i][c] = max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1])
return dp[n][cap]
/* Complete knapsack: Dynamic programming */
int unboundedKnapsackDP(vector<int> &wgt, vector<int> &val, int cap) {
int n = wgt.size();
// Initialize dp table
vector<vector<int>> dp(n + 1, vector<int>(cap + 1, 0));
// State transition
for (int i = 1; i <= n; i++) {
for (int c = 1; c <= cap; c++) {
if (wgt[i - 1] > c) {
// If exceeding the knapsack capacity, do not choose item i
dp[i][c] = dp[i - 1][c];
} else {
// The greater value between not choosing and choosing item i
dp[i][c] = max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1]);
}
}
}
return dp[n][cap];
}
/* Complete knapsack: Dynamic programming */
int unboundedKnapsackDP(int[] wgt, int[] val, int cap) {
int n = wgt.length;
// Initialize dp table
int[][] dp = new int[n + 1][cap + 1];
// State transition
for (int i = 1; i <= n; i++) {
for (int c = 1; c <= cap; c++) {
if (wgt[i - 1] > c) {
// If exceeding the knapsack capacity, do not choose item i
dp[i][c] = dp[i - 1][c];
} else {
// The greater value between not choosing and choosing item i
dp[i][c] = Math.max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1]);
}
}
}
return dp[n][cap];
}
3. Space optimization¶
Since the current state comes from the state to the left and above, the space-optimized solution should perform a forward traversal for each row in the
This traversal order is the opposite of that for the 0-1 knapsack. Please refer to Figure 14-23 to understand the difference.
Figure 14-23 Dynamic programming process for the unbounded knapsack problem after space optimization
The code implementation is quite simple, just remove the first dimension of the array dp
:
def unbounded_knapsack_dp_comp(wgt: list[int], val: list[int], cap: int) -> int:
"""Complete knapsack: Space-optimized dynamic programming"""
n = len(wgt)
# Initialize dp table
dp = [0] * (cap + 1)
# State transition
for i in range(1, n + 1):
# Traverse in order
for c in range(1, cap + 1):
if wgt[i - 1] > c:
# If exceeding the knapsack capacity, do not choose item i
dp[c] = dp[c]
else:
# The greater value between not choosing and choosing item i
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1])
return dp[cap]
/* Complete knapsack: Space-optimized dynamic programming */
int unboundedKnapsackDPComp(vector<int> &wgt, vector<int> &val, int cap) {
int n = wgt.size();
// Initialize dp table
vector<int> dp(cap + 1, 0);
// State transition
for (int i = 1; i <= n; i++) {
for (int c = 1; c <= cap; c++) {
if (wgt[i - 1] > c) {
// If exceeding the knapsack capacity, do not choose item i
dp[c] = dp[c];
} else {
// The greater value between not choosing and choosing item i
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);
}
}
}
return dp[cap];
}
/* Complete knapsack: Space-optimized dynamic programming */
int unboundedKnapsackDPComp(int[] wgt, int[] val, int cap) {
int n = wgt.length;
// Initialize dp table
int[] dp = new int[cap + 1];
// State transition
for (int i = 1; i <= n; i++) {
for (int c = 1; c <= cap; c++) {
if (wgt[i - 1] > c) {
// If exceeding the knapsack capacity, do not choose item i
dp[c] = dp[c];
} else {
// The greater value between not choosing and choosing item i
dp[c] = Math.max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);
}
}
}
return dp[cap];
}
14.5.2 Coin change problem¶
The knapsack problem is a representative of a large class of dynamic programming problems and has many variants, such as the coin change problem.
Question
Given
Figure 14-24 Example data for the coin change problem
1. Dynamic programming approach¶
The coin change can be seen as a special case of the unbounded knapsack problem, sharing the following similarities and differences.
- The two problems can be converted into each other: "item" corresponds to "coin", "item weight" corresponds to "coin denomination", and "backpack capacity" corresponds to "target amount".
- The optimization goals are opposite: the unbounded knapsack problem aims to maximize the value of items, while the coin change problem aims to minimize the number of coins.
- The unbounded knapsack problem seeks solutions "not exceeding" the backpack capacity, while the coin change seeks solutions that "exactly" make up the target amount.
First step: Think through each round's decision-making, define the state, and thus derive the
The state
The two-dimensional
Second step: Identify the optimal substructure and derive the state transition equation
This problem differs from the unbounded knapsack problem in two aspects of the state transition equation.
- This problem seeks the minimum, so the operator
needs to be changed to . - The optimization is focused on the number of coins, so simply add
when a coin is chosen.
Third step: Define boundary conditions and state transition order
When the target amount is
When there are no coins, it is impossible to make up any amount >0, which is an invalid solution. To allow the
2. Code implementation¶
Most programming languages do not provide a int
can be used as a substitute. This can lead to overflow: the
For this reason, we use the number
def coin_change_dp(coins: list[int], amt: int) -> int:
"""Coin change: Dynamic programming"""
n = len(coins)
MAX = amt + 1
# Initialize dp table
dp = [[0] * (amt + 1) for _ in range(n + 1)]
# State transition: first row and first column
for a in range(1, amt + 1):
dp[0][a] = MAX
# State transition: the rest of the rows and columns
for i in range(1, n + 1):
for a in range(1, amt + 1):
if coins[i - 1] > a:
# If exceeding the target amount, do not choose coin i
dp[i][a] = dp[i - 1][a]
else:
# The smaller value between not choosing and choosing coin i
dp[i][a] = min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1)
return dp[n][amt] if dp[n][amt] != MAX else -1
/* Coin change: Dynamic programming */
int coinChangeDP(vector<int> &coins, int amt) {
int n = coins.size();
int MAX = amt + 1;
// Initialize dp table
vector<vector<int>> dp(n + 1, vector<int>(amt + 1, 0));
// State transition: first row and first column
for (int a = 1; a <= amt; a++) {
dp[0][a] = MAX;
}
// State transition: the rest of the rows and columns
for (int i = 1; i <= n; i++) {
for (int a = 1; a <= amt; a++) {
if (coins[i - 1] > a) {
// If exceeding the target amount, do not choose coin i
dp[i][a] = dp[i - 1][a];
} else {
// The smaller value between not choosing and choosing coin i
dp[i][a] = min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1);
}
}
}
return dp[n][amt] != MAX ? dp[n][amt] : -1;
}
/* Coin change: Dynamic programming */
int coinChangeDP(int[] coins, int amt) {
int n = coins.length;
int MAX = amt + 1;
// Initialize dp table
int[][] dp = new int[n + 1][amt + 1];
// State transition: first row and first column
for (int a = 1; a <= amt; a++) {
dp[0][a] = MAX;
}
// State transition: the rest of the rows and columns
for (int i = 1; i <= n; i++) {
for (int a = 1; a <= amt; a++) {
if (coins[i - 1] > a) {
// If exceeding the target amount, do not choose coin i
dp[i][a] = dp[i - 1][a];
} else {
// The smaller value between not choosing and choosing coin i
dp[i][a] = Math.min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1);
}
}
}
return dp[n][amt] != MAX ? dp[n][amt] : -1;
}
Figure 14-25 show the dynamic programming process for the coin change problem, which is very similar to the unbounded knapsack problem.
Figure 14-25 Dynamic programming process for the coin change problem
3. Space optimization¶
The space optimization for the coin change problem is handled in the same way as for the unbounded knapsack problem:
def coin_change_dp_comp(coins: list[int], amt: int) -> int:
"""Coin change: Space-optimized dynamic programming"""
n = len(coins)
MAX = amt + 1
# Initialize dp table
dp = [MAX] * (amt + 1)
dp[0] = 0
# State transition
for i in range(1, n + 1):
# Traverse in order
for a in range(1, amt + 1):
if coins[i - 1] > a:
# If exceeding the target amount, do not choose coin i
dp[a] = dp[a]
else:
# The smaller value between not choosing and choosing coin i
dp[a] = min(dp[a], dp[a - coins[i - 1]] + 1)
return dp[amt] if dp[amt] != MAX else -1
/* Coin change: Space-optimized dynamic programming */
int coinChangeDPComp(vector<int> &coins, int amt) {
int n = coins.size();
int MAX = amt + 1;
// Initialize dp table
vector<int> dp(amt + 1, MAX);
dp[0] = 0;
// State transition
for (int i = 1; i <= n; i++) {
for (int a = 1; a <= amt; a++) {
if (coins[i - 1] > a) {
// If exceeding the target amount, do not choose coin i
dp[a] = dp[a];
} else {
// The smaller value between not choosing and choosing coin i
dp[a] = min(dp[a], dp[a - coins[i - 1]] + 1);
}
}
}
return dp[amt] != MAX ? dp[amt] : -1;
}
/* Coin change: Space-optimized dynamic programming */
int coinChangeDPComp(int[] coins, int amt) {
int n = coins.length;
int MAX = amt + 1;
// Initialize dp table
int[] dp = new int[amt + 1];
Arrays.fill(dp, MAX);
dp[0] = 0;
// State transition
for (int i = 1; i <= n; i++) {
for (int a = 1; a <= amt; a++) {
if (coins[i - 1] > a) {
// If exceeding the target amount, do not choose coin i
dp[a] = dp[a];
} else {
// The smaller value between not choosing and choosing coin i
dp[a] = Math.min(dp[a], dp[a - coins[i - 1]] + 1);
}
}
}
return dp[amt] != MAX ? dp[amt] : -1;
}
14.5.3 Coin change problem II¶
Question
Given
Figure 14-26 Example data for Coin Change Problem II
1. Dynamic programming approach¶
Compared to the previous problem, the goal of this problem is to determine the number of combinations, so the sub-problem becomes: the number of combinations that can make up amount
The number of combinations for the current state is the sum of the combinations from not selecting the current coin and selecting the current coin. The state transition equation is:
When the target amount is
2. Code implementation¶
def coin_change_ii_dp(coins: list[int], amt: int) -> int:
"""Coin change II: Dynamic programming"""
n = len(coins)
# Initialize dp table
dp = [[0] * (amt + 1) for _ in range(n + 1)]
# Initialize first column
for i in range(n + 1):
dp[i][0] = 1
# State transition
for i in range(1, n + 1):
for a in range(1, amt + 1):
if coins[i - 1] > a:
# If exceeding the target amount, do not choose coin i
dp[i][a] = dp[i - 1][a]
else:
# The sum of the two options of not choosing and choosing coin i
dp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]]
return dp[n][amt]
/* Coin change II: Dynamic programming */
int coinChangeIIDP(vector<int> &coins, int amt) {
int n = coins.size();
// Initialize dp table
vector<vector<int>> dp(n + 1, vector<int>(amt + 1, 0));
// Initialize first column
for (int i = 0; i <= n; i++) {
dp[i][0] = 1;
}
// State transition
for (int i = 1; i <= n; i++) {
for (int a = 1; a <= amt; a++) {
if (coins[i - 1] > a) {
// If exceeding the target amount, do not choose coin i
dp[i][a] = dp[i - 1][a];
} else {
// The sum of the two options of not choosing and choosing coin i
dp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]];
}
}
}
return dp[n][amt];
}
/* Coin change II: Dynamic programming */
int coinChangeIIDP(int[] coins, int amt) {
int n = coins.length;
// Initialize dp table
int[][] dp = new int[n + 1][amt + 1];
// Initialize first column
for (int i = 0; i <= n; i++) {
dp[i][0] = 1;
}
// State transition
for (int i = 1; i <= n; i++) {
for (int a = 1; a <= amt; a++) {
if (coins[i - 1] > a) {
// If exceeding the target amount, do not choose coin i
dp[i][a] = dp[i - 1][a];
} else {
// The sum of the two options of not choosing and choosing coin i
dp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]];
}
}
}
return dp[n][amt];
}
3. Space optimization¶
The space optimization approach is the same, just remove the coin dimension:
def coin_change_ii_dp_comp(coins: list[int], amt: int) -> int:
"""Coin change II: Space-optimized dynamic programming"""
n = len(coins)
# Initialize dp table
dp = [0] * (amt + 1)
dp[0] = 1
# State transition
for i in range(1, n + 1):
# Traverse in order
for a in range(1, amt + 1):
if coins[i - 1] > a:
# If exceeding the target amount, do not choose coin i
dp[a] = dp[a]
else:
# The sum of the two options of not choosing and choosing coin i
dp[a] = dp[a] + dp[a - coins[i - 1]]
return dp[amt]
/* Coin change II: Space-optimized dynamic programming */
int coinChangeIIDPComp(vector<int> &coins, int amt) {
int n = coins.size();
// Initialize dp table
vector<int> dp(amt + 1, 0);
dp[0] = 1;
// State transition
for (int i = 1; i <= n; i++) {
for (int a = 1; a <= amt; a++) {
if (coins[i - 1] > a) {
// If exceeding the target amount, do not choose coin i
dp[a] = dp[a];
} else {
// The sum of the two options of not choosing and choosing coin i
dp[a] = dp[a] + dp[a - coins[i - 1]];
}
}
}
return dp[amt];
}
/* Coin change II: Space-optimized dynamic programming */
int coinChangeIIDPComp(int[] coins, int amt) {
int n = coins.length;
// Initialize dp table
int[] dp = new int[amt + 1];
dp[0] = 1;
// State transition
for (int i = 1; i <= n; i++) {
for (int a = 1; a <= amt; a++) {
if (coins[i - 1] > a) {
// If exceeding the target amount, do not choose coin i
dp[a] = dp[a];
} else {
// The sum of the two options of not choosing and choosing coin i
dp[a] = dp[a] + dp[a - coins[i - 1]];
}
}
}
return dp[amt];
}