14.6 Edit Distance Problem¶
Edit distance, also known as Levenshtein distance, refers to the minimum number of edits required to transform one string into another, commonly used in information retrieval and natural language processing to measure the similarity between two sequences.
Question
Given two strings \(s\) and \(t\), return the minimum number of edits required to transform \(s\) into \(t\).
You can perform three types of edit operations on a string: insert a character, delete a character, or replace a character with any other character.
As shown in Figure 14-27, transforming kitten into sitting requires 3 edits, including 2 replacements and 1 insertion; transforming hello into algo requires 3 steps, including 2 replacements and 1 deletion.
Figure 14-27 Example data for edit distance
The edit distance problem can be naturally explained using the decision tree model. Strings correspond to tree nodes, and a round of decision (one edit operation) corresponds to an edge of the tree.
As shown in Figure 14-28, without restricting operations, each node can branch into many edges, with each edge corresponding to one operation, meaning there are many possible paths to transform hello into algo.
From the perspective of the decision tree, the goal of this problem is to find the shortest path between node hello and node algo.
Figure 14-28 Representing edit distance problem based on decision tree model
1. Dynamic Programming Approach¶
Step 1: Think about the decisions in each round, define the state, and thus obtain the \(dp\) table
Each round of decision involves performing one edit operation on string \(s\).
We want the problem scale to gradually decrease during the editing process, which allows us to construct subproblems. Let the lengths of strings \(s\) and \(t\) be \(n\) and \(m\) respectively. We first consider the tail characters of the two strings, \(s[n-1]\) and \(t[m-1]\).
- If \(s[n-1]\) and \(t[m-1]\) are the same, we can skip them and directly consider \(s[n-2]\) and \(t[m-2]\).
- If \(s[n-1]\) and \(t[m-1]\) are different, we need to perform one edit on \(s\) (insert, delete, or replace) to make the tail characters of the two strings the same, allowing us to skip them and consider a smaller-scale problem.
In other words, each round of decision (edit operation) we make on string \(s\) will change the remaining characters to be matched in \(s\) and \(t\). Therefore, the state is the \(i\)-th and \(j\)-th characters currently being considered in \(s\) and \(t\), denoted as \([i, j]\).
State \([i, j]\) corresponds to the subproblem: the minimum number of edits required to change the first \(i\) characters of \(s\) into the first \(j\) characters of \(t\).
From this, we obtain a two-dimensional \(dp\) table of size \((i+1) \times (j+1)\).
Step 2: Identify the optimal substructure, and then derive the state transition equation
Consider subproblem \(dp[i, j]\), where the tail characters of the corresponding two strings are \(s[i-1]\) and \(t[j-1]\), which can be divided into the three cases shown in Figure 14-29 based on different edit operations.
- Insert \(t[j-1]\) after \(s[i-1]\), then the remaining subproblem is \(dp[i, j-1]\).
- Delete \(s[i-1]\), then the remaining subproblem is \(dp[i-1, j]\).
- Replace \(s[i-1]\) with \(t[j-1]\), then the remaining subproblem is \(dp[i-1, j-1]\).
Figure 14-29 State transition for edit distance
Based on the above analysis, the optimal substructure can be obtained: the minimum number of edits for \(dp[i, j]\) equals the minimum among the minimum edit steps of \(dp[i, j-1]\), \(dp[i-1, j]\), and \(dp[i-1, j-1]\), plus the edit step \(1\) for this time. The corresponding state transition equation is:
Please note that when \(s[i-1]\) and \(t[j-1]\) are the same, no edit is required for the current character, in which case the state transition equation is:
Step 3: Determine boundary conditions and state transition order
When both strings are empty, the number of edit steps is \(0\), i.e., \(dp[0, 0] = 0\). When \(s\) is empty but \(t\) is not, the minimum number of edit steps equals the length of \(t\), i.e., the first row \(dp[0, j] = j\). When \(s\) is not empty but \(t\) is empty, the minimum number of edit steps equals the length of \(s\), i.e., the first column \(dp[i, 0] = i\).
Observing the state transition equation, the solution \(dp[i, j]\) depends on solutions to the left, above, and upper-left, so the entire \(dp\) table can be traversed in order through two nested loops.
2. Code Implementation¶
def edit_distance_dp(s: str, t: str) -> int:
"""Edit distance: Dynamic programming"""
n, m = len(s), len(t)
dp = [[0] * (m + 1) for _ in range(n + 1)]
# State transition: first row and first column
for i in range(1, n + 1):
dp[i][0] = i
for j in range(1, m + 1):
dp[0][j] = j
# State transition: rest of the rows and columns
for i in range(1, n + 1):
for j in range(1, m + 1):
if s[i - 1] == t[j - 1]:
# If two characters are equal, skip both characters
dp[i][j] = dp[i - 1][j - 1]
else:
# Minimum edit steps = minimum edit steps of insert, delete, replace + 1
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j], dp[i - 1][j - 1]) + 1
return dp[n][m]
/* Edit distance: Dynamic programming */
int editDistanceDP(string s, string t) {
int n = s.length(), m = t.length();
vector<vector<int>> dp(n + 1, vector<int>(m + 1, 0));
// State transition: first row and first column
for (int i = 1; i <= n; i++) {
dp[i][0] = i;
}
for (int j = 1; j <= m; j++) {
dp[0][j] = j;
}
// State transition: rest of the rows and columns
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
if (s[i - 1] == t[j - 1]) {
// If two characters are equal, skip both characters
dp[i][j] = dp[i - 1][j - 1];
} else {
// Minimum edit steps = minimum edit steps of insert, delete, replace + 1
dp[i][j] = min(min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;
}
}
}
return dp[n][m];
}
/* Edit distance: Dynamic programming */
int editDistanceDP(String s, String t) {
int n = s.length(), m = t.length();
int[][] dp = new int[n + 1][m + 1];
// State transition: first row and first column
for (int i = 1; i <= n; i++) {
dp[i][0] = i;
}
for (int j = 1; j <= m; j++) {
dp[0][j] = j;
}
// State transition: rest of the rows and columns
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
if (s.charAt(i - 1) == t.charAt(j - 1)) {
// If two characters are equal, skip both characters
dp[i][j] = dp[i - 1][j - 1];
} else {
// Minimum edit steps = minimum edit steps of insert, delete, replace + 1
dp[i][j] = Math.min(Math.min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;
}
}
}
return dp[n][m];
}
/* Edit distance: Dynamic programming */
int EditDistanceDP(string s, string t) {
int n = s.Length, m = t.Length;
int[,] dp = new int[n + 1, m + 1];
// State transition: first row and first column
for (int i = 1; i <= n; i++) {
dp[i, 0] = i;
}
for (int j = 1; j <= m; j++) {
dp[0, j] = j;
}
// State transition: rest of the rows and columns
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
if (s[i - 1] == t[j - 1]) {
// If two characters are equal, skip both characters
dp[i, j] = dp[i - 1, j - 1];
} else {
// Minimum edit steps = minimum edit steps of insert, delete, replace + 1
dp[i, j] = Math.Min(Math.Min(dp[i, j - 1], dp[i - 1, j]), dp[i - 1, j - 1]) + 1;
}
}
}
return dp[n, m];
}
/* Edit distance: Dynamic programming */
func editDistanceDP(s string, t string) int {
n := len(s)
m := len(t)
dp := make([][]int, n+1)
for i := 0; i <= n; i++ {
dp[i] = make([]int, m+1)
}
// State transition: first row and first column
for i := 1; i <= n; i++ {
dp[i][0] = i
}
for j := 1; j <= m; j++ {
dp[0][j] = j
}
// State transition: rest of the rows and columns
for i := 1; i <= n; i++ {
for j := 1; j <= m; j++ {
if s[i-1] == t[j-1] {
// If two characters are equal, skip both characters
dp[i][j] = dp[i-1][j-1]
} else {
// Minimum edit steps = minimum edit steps of insert, delete, replace + 1
dp[i][j] = MinInt(MinInt(dp[i][j-1], dp[i-1][j]), dp[i-1][j-1]) + 1
}
}
}
return dp[n][m]
}
/* Edit distance: Dynamic programming */
func editDistanceDP(s: String, t: String) -> Int {
let n = s.utf8CString.count
let m = t.utf8CString.count
var dp = Array(repeating: Array(repeating: 0, count: m + 1), count: n + 1)
// State transition: first row and first column
for i in 1 ... n {
dp[i][0] = i
}
for j in 1 ... m {
dp[0][j] = j
}
// State transition: rest of the rows and columns
for i in 1 ... n {
for j in 1 ... m {
if s.utf8CString[i - 1] == t.utf8CString[j - 1] {
// If two characters are equal, skip both characters
dp[i][j] = dp[i - 1][j - 1]
} else {
// Minimum edit steps = minimum edit steps of insert, delete, replace + 1
dp[i][j] = min(min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1
}
}
}
return dp[n][m]
}
/* Edit distance: Dynamic programming */
function editDistanceDP(s, t) {
const n = s.length,
m = t.length;
const dp = Array.from({ length: n + 1 }, () => new Array(m + 1).fill(0));
// State transition: first row and first column
for (let i = 1; i <= n; i++) {
dp[i][0] = i;
}
for (let j = 1; j <= m; j++) {
dp[0][j] = j;
}
// State transition: rest of the rows and columns
for (let i = 1; i <= n; i++) {
for (let j = 1; j <= m; j++) {
if (s.charAt(i - 1) === t.charAt(j - 1)) {
// If two characters are equal, skip both characters
dp[i][j] = dp[i - 1][j - 1];
} else {
// Minimum edit steps = minimum edit steps of insert, delete, replace + 1
dp[i][j] =
Math.min(dp[i][j - 1], dp[i - 1][j], dp[i - 1][j - 1]) + 1;
}
}
}
return dp[n][m];
}
/* Edit distance: Dynamic programming */
function editDistanceDP(s: string, t: string): number {
const n = s.length,
m = t.length;
const dp = Array.from({ length: n + 1 }, () =>
Array.from({ length: m + 1 }, () => 0)
);
// State transition: first row and first column
for (let i = 1; i <= n; i++) {
dp[i][0] = i;
}
for (let j = 1; j <= m; j++) {
dp[0][j] = j;
}
// State transition: rest of the rows and columns
for (let i = 1; i <= n; i++) {
for (let j = 1; j <= m; j++) {
if (s.charAt(i - 1) === t.charAt(j - 1)) {
// If two characters are equal, skip both characters
dp[i][j] = dp[i - 1][j - 1];
} else {
// Minimum edit steps = minimum edit steps of insert, delete, replace + 1
dp[i][j] =
Math.min(dp[i][j - 1], dp[i - 1][j], dp[i - 1][j - 1]) + 1;
}
}
}
return dp[n][m];
}
/* Edit distance: Dynamic programming */
int editDistanceDP(String s, String t) {
int n = s.length, m = t.length;
List<List<int>> dp = List.generate(n + 1, (_) => List.filled(m + 1, 0));
// State transition: first row and first column
for (int i = 1; i <= n; i++) {
dp[i][0] = i;
}
for (int j = 1; j <= m; j++) {
dp[0][j] = j;
}
// State transition: rest of the rows and columns
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
if (s[i - 1] == t[j - 1]) {
// If two characters are equal, skip both characters
dp[i][j] = dp[i - 1][j - 1];
} else {
// Minimum edit steps = minimum edit steps of insert, delete, replace + 1
dp[i][j] = min(min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;
}
}
}
return dp[n][m];
}
/* Edit distance: Dynamic programming */
fn edit_distance_dp(s: &str, t: &str) -> i32 {
let (n, m) = (s.len(), t.len());
let mut dp = vec![vec![0; m + 1]; n + 1];
// State transition: first row and first column
for i in 1..=n {
dp[i][0] = i as i32;
}
for j in 1..m {
dp[0][j] = j as i32;
}
// State transition: rest of the rows and columns
for i in 1..=n {
for j in 1..=m {
if s.chars().nth(i - 1) == t.chars().nth(j - 1) {
// If two characters are equal, skip both characters
dp[i][j] = dp[i - 1][j - 1];
} else {
// Minimum edit steps = minimum edit steps of insert, delete, replace + 1
dp[i][j] =
std::cmp::min(std::cmp::min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;
}
}
}
dp[n][m]
}
/* Edit distance: Dynamic programming */
int editDistanceDP(char *s, char *t, int n, int m) {
int **dp = malloc((n + 1) * sizeof(int *));
for (int i = 0; i <= n; i++) {
dp[i] = calloc(m + 1, sizeof(int));
}
// State transition: first row and first column
for (int i = 1; i <= n; i++) {
dp[i][0] = i;
}
for (int j = 1; j <= m; j++) {
dp[0][j] = j;
}
// State transition: rest of the rows and columns
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
if (s[i - 1] == t[j - 1]) {
// If two characters are equal, skip both characters
dp[i][j] = dp[i - 1][j - 1];
} else {
// Minimum edit steps = minimum edit steps of insert, delete, replace + 1
dp[i][j] = myMin(myMin(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;
}
}
}
int res = dp[n][m];
// Free memory
for (int i = 0; i <= n; i++) {
free(dp[i]);
}
return res;
}
/* Edit distance: Dynamic programming */
fun editDistanceDP(s: String, t: String): Int {
val n = s.length
val m = t.length
val dp = Array(n + 1) { IntArray(m + 1) }
// State transition: first row and first column
for (i in 1..n) {
dp[i][0] = i
}
for (j in 1..m) {
dp[0][j] = j
}
// State transition: rest of the rows and columns
for (i in 1..n) {
for (j in 1..m) {
if (s[i - 1] == t[j - 1]) {
// If two characters are equal, skip both characters
dp[i][j] = dp[i - 1][j - 1]
} else {
// Minimum edit steps = minimum edit steps of insert, delete, replace + 1
dp[i][j] = min(min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1
}
}
}
return dp[n][m]
}
### Edit distance: dynamic programming ###
def edit_distance_dp(s, t)
n, m = s.length, t.length
dp = Array.new(n + 1) { Array.new(m + 1, 0) }
# State transition: first row and first column
(1...(n + 1)).each { |i| dp[i][0] = i }
(1...(m + 1)).each { |j| dp[0][j] = j }
# State transition: rest of the rows and columns
for i in 1...(n + 1)
for j in 1...(m +1)
if s[i - 1] == t[j - 1]
# If two characters are equal, skip both characters
dp[i][j] = dp[i - 1][j - 1]
else
# Minimum edit steps = minimum edit steps of insert, delete, replace + 1
dp[i][j] = [dp[i][j - 1], dp[i - 1][j], dp[i - 1][j - 1]].min + 1
end
end
end
dp[n][m]
end
As shown in Figure 14-30, the state transition process for the edit distance problem is very similar to the knapsack problem and can both be viewed as the process of filling a two-dimensional grid.
Figure 14-30 Dynamic programming process for edit distance
3. Space Optimization¶
Since \(dp[i, j]\) is transferred from the solutions above \(dp[i-1, j]\), to the left \(dp[i, j-1]\), and to the upper-left \(dp[i-1, j-1]\), forward traversal will lose the upper-left solution \(dp[i-1, j-1]\), and reverse traversal cannot build \(dp[i, j-1]\) in advance, so neither traversal order is feasible.
For this reason, we can use a variable leftup to temporarily store the upper-left solution \(dp[i-1, j-1]\), so we only need to consider the solutions to the left and above. This situation is the same as the unbounded knapsack problem, allowing for forward traversal. The code is as follows:
def edit_distance_dp_comp(s: str, t: str) -> int:
"""Edit distance: Space-optimized dynamic programming"""
n, m = len(s), len(t)
dp = [0] * (m + 1)
# State transition: first row
for j in range(1, m + 1):
dp[j] = j
# State transition: rest of the rows
for i in range(1, n + 1):
# State transition: first column
leftup = dp[0] # Temporarily store dp[i-1, j-1]
dp[0] += 1
# State transition: rest of the columns
for j in range(1, m + 1):
temp = dp[j]
if s[i - 1] == t[j - 1]:
# If two characters are equal, skip both characters
dp[j] = leftup
else:
# Minimum edit steps = minimum edit steps of insert, delete, replace + 1
dp[j] = min(dp[j - 1], dp[j], leftup) + 1
leftup = temp # Update for next round's dp[i-1, j-1]
return dp[m]
/* Edit distance: Space-optimized dynamic programming */
int editDistanceDPComp(string s, string t) {
int n = s.length(), m = t.length();
vector<int> dp(m + 1, 0);
// State transition: first row
for (int j = 1; j <= m; j++) {
dp[j] = j;
}
// State transition: rest of the rows
for (int i = 1; i <= n; i++) {
// State transition: first column
int leftup = dp[0]; // Temporarily store dp[i-1, j-1]
dp[0] = i;
// State transition: rest of the columns
for (int j = 1; j <= m; j++) {
int temp = dp[j];
if (s[i - 1] == t[j - 1]) {
// If two characters are equal, skip both characters
dp[j] = leftup;
} else {
// Minimum edit steps = minimum edit steps of insert, delete, replace + 1
dp[j] = min(min(dp[j - 1], dp[j]), leftup) + 1;
}
leftup = temp; // Update for next round's dp[i-1, j-1]
}
}
return dp[m];
}
/* Edit distance: Space-optimized dynamic programming */
int editDistanceDPComp(String s, String t) {
int n = s.length(), m = t.length();
int[] dp = new int[m + 1];
// State transition: first row
for (int j = 1; j <= m; j++) {
dp[j] = j;
}
// State transition: rest of the rows
for (int i = 1; i <= n; i++) {
// State transition: first column
int leftup = dp[0]; // Temporarily store dp[i-1, j-1]
dp[0] = i;
// State transition: rest of the columns
for (int j = 1; j <= m; j++) {
int temp = dp[j];
if (s.charAt(i - 1) == t.charAt(j - 1)) {
// If two characters are equal, skip both characters
dp[j] = leftup;
} else {
// Minimum edit steps = minimum edit steps of insert, delete, replace + 1
dp[j] = Math.min(Math.min(dp[j - 1], dp[j]), leftup) + 1;
}
leftup = temp; // Update for next round's dp[i-1, j-1]
}
}
return dp[m];
}
/* Edit distance: Space-optimized dynamic programming */
int EditDistanceDPComp(string s, string t) {
int n = s.Length, m = t.Length;
int[] dp = new int[m + 1];
// State transition: first row
for (int j = 1; j <= m; j++) {
dp[j] = j;
}
// State transition: rest of the rows
for (int i = 1; i <= n; i++) {
// State transition: first column
int leftup = dp[0]; // Temporarily store dp[i-1, j-1]
dp[0] = i;
// State transition: rest of the columns
for (int j = 1; j <= m; j++) {
int temp = dp[j];
if (s[i - 1] == t[j - 1]) {
// If two characters are equal, skip both characters
dp[j] = leftup;
} else {
// Minimum edit steps = minimum edit steps of insert, delete, replace + 1
dp[j] = Math.Min(Math.Min(dp[j - 1], dp[j]), leftup) + 1;
}
leftup = temp; // Update for next round's dp[i-1, j-1]
}
}
return dp[m];
}
/* Edit distance: Space-optimized dynamic programming */
func editDistanceDPComp(s string, t string) int {
n := len(s)
m := len(t)
dp := make([]int, m+1)
// State transition: first row
for j := 1; j <= m; j++ {
dp[j] = j
}
// State transition: rest of the rows
for i := 1; i <= n; i++ {
// State transition: first column
leftUp := dp[0] // Temporarily store dp[i-1, j-1]
dp[0] = i
// State transition: rest of the columns
for j := 1; j <= m; j++ {
temp := dp[j]
if s[i-1] == t[j-1] {
// If two characters are equal, skip both characters
dp[j] = leftUp
} else {
// Minimum edit steps = minimum edit steps of insert, delete, replace + 1
dp[j] = MinInt(MinInt(dp[j-1], dp[j]), leftUp) + 1
}
leftUp = temp // Update for next round's dp[i-1, j-1]
}
}
return dp[m]
}
/* Edit distance: Space-optimized dynamic programming */
func editDistanceDPComp(s: String, t: String) -> Int {
let n = s.utf8CString.count
let m = t.utf8CString.count
var dp = Array(repeating: 0, count: m + 1)
// State transition: first row
for j in 1 ... m {
dp[j] = j
}
// State transition: rest of the rows
for i in 1 ... n {
// State transition: first column
var leftup = dp[0] // Temporarily store dp[i-1, j-1]
dp[0] = i
// State transition: rest of the columns
for j in 1 ... m {
let temp = dp[j]
if s.utf8CString[i - 1] == t.utf8CString[j - 1] {
// If two characters are equal, skip both characters
dp[j] = leftup
} else {
// Minimum edit steps = minimum edit steps of insert, delete, replace + 1
dp[j] = min(min(dp[j - 1], dp[j]), leftup) + 1
}
leftup = temp // Update for next round's dp[i-1, j-1]
}
}
return dp[m]
}
/* Edit distance: Space-optimized dynamic programming */
function editDistanceDPComp(s, t) {
const n = s.length,
m = t.length;
const dp = new Array(m + 1).fill(0);
// State transition: first row
for (let j = 1; j <= m; j++) {
dp[j] = j;
}
// State transition: rest of the rows
for (let i = 1; i <= n; i++) {
// State transition: first column
let leftup = dp[0]; // Temporarily store dp[i-1, j-1]
dp[0] = i;
// State transition: rest of the columns
for (let j = 1; j <= m; j++) {
const temp = dp[j];
if (s.charAt(i - 1) === t.charAt(j - 1)) {
// If two characters are equal, skip both characters
dp[j] = leftup;
} else {
// Minimum edit steps = minimum edit steps of insert, delete, replace + 1
dp[j] = Math.min(dp[j - 1], dp[j], leftup) + 1;
}
leftup = temp; // Update for next round's dp[i-1, j-1]
}
}
return dp[m];
}
/* Edit distance: Space-optimized dynamic programming */
function editDistanceDPComp(s: string, t: string): number {
const n = s.length,
m = t.length;
const dp = new Array(m + 1).fill(0);
// State transition: first row
for (let j = 1; j <= m; j++) {
dp[j] = j;
}
// State transition: rest of the rows
for (let i = 1; i <= n; i++) {
// State transition: first column
let leftup = dp[0]; // Temporarily store dp[i-1, j-1]
dp[0] = i;
// State transition: rest of the columns
for (let j = 1; j <= m; j++) {
const temp = dp[j];
if (s.charAt(i - 1) === t.charAt(j - 1)) {
// If two characters are equal, skip both characters
dp[j] = leftup;
} else {
// Minimum edit steps = minimum edit steps of insert, delete, replace + 1
dp[j] = Math.min(dp[j - 1], dp[j], leftup) + 1;
}
leftup = temp; // Update for next round's dp[i-1, j-1]
}
}
return dp[m];
}
/* Edit distance: Space-optimized dynamic programming */
int editDistanceDPComp(String s, String t) {
int n = s.length, m = t.length;
List<int> dp = List.filled(m + 1, 0);
// State transition: first row
for (int j = 1; j <= m; j++) {
dp[j] = j;
}
// State transition: rest of the rows
for (int i = 1; i <= n; i++) {
// State transition: first column
int leftup = dp[0]; // Temporarily store dp[i-1, j-1]
dp[0] = i;
// State transition: rest of the columns
for (int j = 1; j <= m; j++) {
int temp = dp[j];
if (s[i - 1] == t[j - 1]) {
// If two characters are equal, skip both characters
dp[j] = leftup;
} else {
// Minimum edit steps = minimum edit steps of insert, delete, replace + 1
dp[j] = min(min(dp[j - 1], dp[j]), leftup) + 1;
}
leftup = temp; // Update for next round's dp[i-1, j-1]
}
}
return dp[m];
}
/* Edit distance: Space-optimized dynamic programming */
fn edit_distance_dp_comp(s: &str, t: &str) -> i32 {
let (n, m) = (s.len(), t.len());
let mut dp = vec![0; m + 1];
// State transition: first row
for j in 1..m {
dp[j] = j as i32;
}
// State transition: rest of the rows
for i in 1..=n {
// State transition: first column
let mut leftup = dp[0]; // Temporarily store dp[i-1, j-1]
dp[0] = i as i32;
// State transition: rest of the columns
for j in 1..=m {
let temp = dp[j];
if s.chars().nth(i - 1) == t.chars().nth(j - 1) {
// If two characters are equal, skip both characters
dp[j] = leftup;
} else {
// Minimum edit steps = minimum edit steps of insert, delete, replace + 1
dp[j] = std::cmp::min(std::cmp::min(dp[j - 1], dp[j]), leftup) + 1;
}
leftup = temp; // Update for next round's dp[i-1, j-1]
}
}
dp[m]
}
/* Edit distance: Space-optimized dynamic programming */
int editDistanceDPComp(char *s, char *t, int n, int m) {
int *dp = calloc(m + 1, sizeof(int));
// State transition: first row
for (int j = 1; j <= m; j++) {
dp[j] = j;
}
// State transition: rest of the rows
for (int i = 1; i <= n; i++) {
// State transition: first column
int leftup = dp[0]; // Temporarily store dp[i-1, j-1]
dp[0] = i;
// State transition: rest of the columns
for (int j = 1; j <= m; j++) {
int temp = dp[j];
if (s[i - 1] == t[j - 1]) {
// If two characters are equal, skip both characters
dp[j] = leftup;
} else {
// Minimum edit steps = minimum edit steps of insert, delete, replace + 1
dp[j] = myMin(myMin(dp[j - 1], dp[j]), leftup) + 1;
}
leftup = temp; // Update for next round's dp[i-1, j-1]
}
}
int res = dp[m];
// Free memory
free(dp);
return res;
}
/* Edit distance: Space-optimized dynamic programming */
fun editDistanceDPComp(s: String, t: String): Int {
val n = s.length
val m = t.length
val dp = IntArray(m + 1)
// State transition: first row
for (j in 1..m) {
dp[j] = j
}
// State transition: rest of the rows
for (i in 1..n) {
// State transition: first column
var leftup = dp[0] // Temporarily store dp[i-1, j-1]
dp[0] = i
// State transition: rest of the columns
for (j in 1..m) {
val temp = dp[j]
if (s[i - 1] == t[j - 1]) {
// If two characters are equal, skip both characters
dp[j] = leftup
} else {
// Minimum edit steps = minimum edit steps of insert, delete, replace + 1
dp[j] = min(min(dp[j - 1], dp[j]), leftup) + 1
}
leftup = temp // Update for next round's dp[i-1, j-1]
}
}
return dp[m]
}
### Edit distance: space-optimized DP ###
def edit_distance_dp_comp(s, t)
n, m = s.length, t.length
dp = Array.new(m + 1, 0)
# State transition: first row
(1...(m + 1)).each { |j| dp[j] = j }
# State transition: rest of the rows
for i in 1...(n + 1)
# State transition: first column
leftup = dp.first # Temporarily store dp[i-1, j-1]
dp[0] += 1
# State transition: rest of the columns
for j in 1...(m + 1)
temp = dp[j]
if s[i - 1] == t[j - 1]
# If two characters are equal, skip both characters
dp[j] = leftup
else
# Minimum edit steps = minimum edit steps of insert, delete, replace + 1
dp[j] = [dp[j - 1], dp[j], leftup].min + 1
end
leftup = temp # Update for next round's dp[i-1, j-1]
end
end
dp[m]
end

















