Skip to content

12.3   Building a Binary Tree Problem

Question

Given the preorder traversal preorder and inorder traversal inorder of a binary tree, construct the binary tree and return the root node of the binary tree. Assume there are no duplicate node values in the binary tree (as shown in Figure 12-5).

Example data for building a binary tree

Figure 12-5   Example data for building a binary tree

1.   Determining If It Is a Divide and Conquer Problem

The original problem is defined as constructing a binary tree from preorder and inorder, which is a typical divide and conquer problem.

  • The problem can be decomposed: From a divide and conquer perspective, we can divide the original problem into two subproblems: constructing the left subtree and constructing the right subtree, plus one operation: initializing the root node. For each subtree (subproblem), we can still reuse the above division method, dividing it into smaller subtrees (subproblems) until the smallest subproblem (empty subtree) is reached.
  • Subproblems are independent: The left and right subtrees are independent of each other; there is no overlap between them. When constructing the left subtree, we only need to focus on the parts of the inorder and preorder traversals corresponding to the left subtree. The same applies to the right subtree.
  • Solutions of subproblems can be merged: Once we have the left and right subtrees (solutions of subproblems), we can link them to the root node to obtain the solution to the original problem.

2.   How to Divide Subtrees

Based on the above analysis, this problem can be solved using divide and conquer, but how do we divide the left and right subtrees through the preorder traversal preorder and inorder traversal inorder?

According to the definition, both preorder and inorder can be divided into three parts.

  • Preorder traversal: [ Root Node | Left Subtree | Right Subtree ], for example, the tree in Figure 12-5 corresponds to [ 3 | 9 | 2 1 7 ].
  • Inorder traversal: [ Left Subtree | Root Node | Right Subtree ], for example, the tree in Figure 12-5 corresponds to [ 9 | 3 | 1 2 7 ].

Using the data from the figure above as an example, we can obtain the division results through the steps shown in Figure 12-6.

  1. The first element 3 in the preorder traversal is the value of the root node.
  2. Find the index of root node 3 in inorder, and use this index to divide inorder into [ 9 | 3 | 1 2 7 ].
  3. Based on the division result of inorder, it is easy to determine that the left and right subtrees have 1 and 3 nodes respectively, allowing us to divide preorder into [ 3 | 9 | 2 1 7 ].

Dividing subtrees in preorder and inorder traversals

Figure 12-6   Dividing subtrees in preorder and inorder traversals

3.   Describing Subtree Intervals Based on Variables

Based on the above division method, we have obtained the index intervals of the root node, left subtree, and right subtree in preorder and inorder. To describe these index intervals, we need to use several pointer variables.

  • Denote the index of the current tree's root node in preorder as \(i\).
  • Denote the index of the current tree's root node in inorder as \(m\).
  • Denote the index interval of the current tree in inorder as \([l, r]\).

As shown in Table 12-1, through these variables we can represent the index of the root node in preorder and the index intervals of the subtrees in inorder.

Table 12-1   Indices of root node and subtrees in preorder and inorder traversals

Root node index in preorder Subtree index interval in inorder
Current tree \(i\) \([l, r]\)
Left subtree \(i + 1\) \([l, m-1]\)
Right subtree \(i + 1 + (m - l)\) \([m+1, r]\)

Please note that \((m-l)\) in the right subtree root node index means "the number of nodes in the left subtree". It is recommended to understand this in conjunction with Figure 12-7.

Index interval representation of root node and left and right subtrees

Figure 12-7   Index interval representation of root node and left and right subtrees

4.   Code Implementation

To improve the efficiency of querying \(m\), we use a hash table hmap to store the mapping from elements in the inorder array to their indices:

build_tree.py
def dfs(
    preorder: list[int],
    inorder_map: dict[int, int],
    i: int,
    l: int,
    r: int,
) -> TreeNode | None:
    """Build binary tree: divide and conquer"""
    # Terminate when the subtree interval is empty
    if r - l < 0:
        return None
    # Initialize the root node
    root = TreeNode(preorder[i])
    # Query m to divide the left and right subtrees
    m = inorder_map[preorder[i]]
    # Subproblem: build the left subtree
    root.left = dfs(preorder, inorder_map, i + 1, l, m - 1)
    # Subproblem: build the right subtree
    root.right = dfs(preorder, inorder_map, i + 1 + m - l, m + 1, r)
    # Return the root node
    return root

def build_tree(preorder: list[int], inorder: list[int]) -> TreeNode | None:
    """Build binary tree"""
    # Initialize hash map, storing the mapping from inorder elements to indices
    inorder_map = {val: i for i, val in enumerate(inorder)}
    root = dfs(preorder, inorder_map, 0, 0, len(inorder) - 1)
    return root
build_tree.cpp
/* Build binary tree: divide and conquer */
TreeNode *dfs(vector<int> &preorder, unordered_map<int, int> &inorderMap, int i, int l, int r) {
    // Terminate when the subtree interval is empty
    if (r - l < 0)
        return NULL;
    // Initialize the root node
    TreeNode *root = new TreeNode(preorder[i]);
    // Query m to divide the left and right subtrees
    int m = inorderMap[preorder[i]];
    // Subproblem: build the left subtree
    root->left = dfs(preorder, inorderMap, i + 1, l, m - 1);
    // Subproblem: build the right subtree
    root->right = dfs(preorder, inorderMap, i + 1 + m - l, m + 1, r);
    // Return the root node
    return root;
}

/* Build binary tree */
TreeNode *buildTree(vector<int> &preorder, vector<int> &inorder) {
    // Initialize hash map, storing the mapping from inorder elements to indices
    unordered_map<int, int> inorderMap;
    for (int i = 0; i < inorder.size(); i++) {
        inorderMap[inorder[i]] = i;
    }
    TreeNode *root = dfs(preorder, inorderMap, 0, 0, inorder.size() - 1);
    return root;
}
build_tree.java
/* Build binary tree: divide and conquer */
TreeNode dfs(int[] preorder, Map<Integer, Integer> inorderMap, int i, int l, int r) {
    // Terminate when the subtree interval is empty
    if (r - l < 0)
        return null;
    // Initialize the root node
    TreeNode root = new TreeNode(preorder[i]);
    // Query m to divide the left and right subtrees
    int m = inorderMap.get(preorder[i]);
    // Subproblem: build the left subtree
    root.left = dfs(preorder, inorderMap, i + 1, l, m - 1);
    // Subproblem: build the right subtree
    root.right = dfs(preorder, inorderMap, i + 1 + m - l, m + 1, r);
    // Return the root node
    return root;
}

/* Build binary tree */
TreeNode buildTree(int[] preorder, int[] inorder) {
    // Initialize hash map, storing the mapping from inorder elements to indices
    Map<Integer, Integer> inorderMap = new HashMap<>();
    for (int i = 0; i < inorder.length; i++) {
        inorderMap.put(inorder[i], i);
    }
    TreeNode root = dfs(preorder, inorderMap, 0, 0, inorder.length - 1);
    return root;
}
build_tree.cs
/* Build binary tree: divide and conquer */
TreeNode? DFS(int[] preorder, Dictionary<int, int> inorderMap, int i, int l, int r) {
    // Terminate when the subtree interval is empty
    if (r - l < 0)
        return null;
    // Initialize the root node
    TreeNode root = new(preorder[i]);
    // Query m to divide the left and right subtrees
    int m = inorderMap[preorder[i]];
    // Subproblem: build the left subtree
    root.left = DFS(preorder, inorderMap, i + 1, l, m - 1);
    // Subproblem: build the right subtree
    root.right = DFS(preorder, inorderMap, i + 1 + m - l, m + 1, r);
    // Return the root node
    return root;
}

/* Build binary tree */
TreeNode? BuildTree(int[] preorder, int[] inorder) {
    // Initialize hash map, storing the mapping from inorder elements to indices
    Dictionary<int, int> inorderMap = [];
    for (int i = 0; i < inorder.Length; i++) {
        inorderMap.TryAdd(inorder[i], i);
    }
    TreeNode? root = DFS(preorder, inorderMap, 0, 0, inorder.Length - 1);
    return root;
}
build_tree.go
/* Build binary tree: divide and conquer */
func dfsBuildTree(preorder []int, inorderMap map[int]int, i, l, r int) *TreeNode {
    // Terminate when the subtree interval is empty
    if r-l < 0 {
        return nil
    }
    // Initialize the root node
    root := NewTreeNode(preorder[i])
    // Query m to divide the left and right subtrees
    m := inorderMap[preorder[i]]
    // Subproblem: build the left subtree
    root.Left = dfsBuildTree(preorder, inorderMap, i+1, l, m-1)
    // Subproblem: build the right subtree
    root.Right = dfsBuildTree(preorder, inorderMap, i+1+m-l, m+1, r)
    // Return the root node
    return root
}

/* Build binary tree */
func buildTree(preorder, inorder []int) *TreeNode {
    // Initialize hash map, storing the mapping from inorder elements to indices
    inorderMap := make(map[int]int, len(inorder))
    for i := 0; i < len(inorder); i++ {
        inorderMap[inorder[i]] = i
    }

    root := dfsBuildTree(preorder, inorderMap, 0, 0, len(inorder)-1)
    return root
}
build_tree.swift
/* Build binary tree: divide and conquer */
func dfs(preorder: [Int], inorderMap: [Int: Int], i: Int, l: Int, r: Int) -> TreeNode? {
    // Terminate when the subtree interval is empty
    if r - l < 0 {
        return nil
    }
    // Initialize the root node
    let root = TreeNode(x: preorder[i])
    // Query m to divide the left and right subtrees
    let m = inorderMap[preorder[i]]!
    // Subproblem: build the left subtree
    root.left = dfs(preorder: preorder, inorderMap: inorderMap, i: i + 1, l: l, r: m - 1)
    // Subproblem: build the right subtree
    root.right = dfs(preorder: preorder, inorderMap: inorderMap, i: i + 1 + m - l, l: m + 1, r: r)
    // Return the root node
    return root
}

/* Build binary tree */
func buildTree(preorder: [Int], inorder: [Int]) -> TreeNode? {
    // Initialize hash map, storing the mapping from inorder elements to indices
    let inorderMap = inorder.enumerated().reduce(into: [:]) { $0[$1.element] = $1.offset }
    return dfs(preorder: preorder, inorderMap: inorderMap, i: inorder.startIndex, l: inorder.startIndex, r: inorder.endIndex - 1)
}
build_tree.js
/* Build binary tree: divide and conquer */
function dfs(preorder, inorderMap, i, l, r) {
    // Terminate when the subtree interval is empty
    if (r - l < 0) return null;
    // Initialize the root node
    const root = new TreeNode(preorder[i]);
    // Query m to divide the left and right subtrees
    const m = inorderMap.get(preorder[i]);
    // Subproblem: build the left subtree
    root.left = dfs(preorder, inorderMap, i + 1, l, m - 1);
    // Subproblem: build the right subtree
    root.right = dfs(preorder, inorderMap, i + 1 + m - l, m + 1, r);
    // Return the root node
    return root;
}

/* Build binary tree */
function buildTree(preorder, inorder) {
    // Initialize hash map, storing the mapping from inorder elements to indices
    let inorderMap = new Map();
    for (let i = 0; i < inorder.length; i++) {
        inorderMap.set(inorder[i], i);
    }
    const root = dfs(preorder, inorderMap, 0, 0, inorder.length - 1);
    return root;
}
build_tree.ts
/* Build binary tree: divide and conquer */
function dfs(
    preorder: number[],
    inorderMap: Map<number, number>,
    i: number,
    l: number,
    r: number
): TreeNode | null {
    // Terminate when the subtree interval is empty
    if (r - l < 0) return null;
    // Initialize the root node
    const root: TreeNode = new TreeNode(preorder[i]);
    // Query m to divide the left and right subtrees
    const m = inorderMap.get(preorder[i]);
    // Subproblem: build the left subtree
    root.left = dfs(preorder, inorderMap, i + 1, l, m - 1);
    // Subproblem: build the right subtree
    root.right = dfs(preorder, inorderMap, i + 1 + m - l, m + 1, r);
    // Return the root node
    return root;
}

/* Build binary tree */
function buildTree(preorder: number[], inorder: number[]): TreeNode | null {
    // Initialize hash map, storing the mapping from inorder elements to indices
    let inorderMap = new Map<number, number>();
    for (let i = 0; i < inorder.length; i++) {
        inorderMap.set(inorder[i], i);
    }
    const root = dfs(preorder, inorderMap, 0, 0, inorder.length - 1);
    return root;
}
build_tree.dart
/* Build binary tree: divide and conquer */
TreeNode? dfs(
  List<int> preorder,
  Map<int, int> inorderMap,
  int i,
  int l,
  int r,
) {
  // Terminate when the subtree interval is empty
  if (r - l < 0) {
    return null;
  }
  // Initialize the root node
  TreeNode? root = TreeNode(preorder[i]);
  // Query m to divide the left and right subtrees
  int m = inorderMap[preorder[i]]!;
  // Subproblem: build the left subtree
  root.left = dfs(preorder, inorderMap, i + 1, l, m - 1);
  // Subproblem: build the right subtree
  root.right = dfs(preorder, inorderMap, i + 1 + m - l, m + 1, r);
  // Return the root node
  return root;
}

/* Build binary tree */
TreeNode? buildTree(List<int> preorder, List<int> inorder) {
  // Initialize hash map, storing the mapping from inorder elements to indices
  Map<int, int> inorderMap = {};
  for (int i = 0; i < inorder.length; i++) {
    inorderMap[inorder[i]] = i;
  }
  TreeNode? root = dfs(preorder, inorderMap, 0, 0, inorder.length - 1);
  return root;
}
build_tree.rs
/* Build binary tree: divide and conquer */
fn dfs(
    preorder: &[i32],
    inorder_map: &HashMap<i32, i32>,
    i: i32,
    l: i32,
    r: i32,
) -> Option<Rc<RefCell<TreeNode>>> {
    // Terminate when the subtree interval is empty
    if r - l < 0 {
        return None;
    }
    // Initialize the root node
    let root = TreeNode::new(preorder[i as usize]);
    // Query m to divide the left and right subtrees
    let m = inorder_map.get(&preorder[i as usize]).unwrap();
    // Subproblem: build the left subtree
    root.borrow_mut().left = dfs(preorder, inorder_map, i + 1, l, m - 1);
    // Subproblem: build the right subtree
    root.borrow_mut().right = dfs(preorder, inorder_map, i + 1 + m - l, m + 1, r);
    // Return the root node
    Some(root)
}

/* Build binary tree */
fn build_tree(preorder: &[i32], inorder: &[i32]) -> Option<Rc<RefCell<TreeNode>>> {
    // Initialize hash map, storing the mapping from inorder elements to indices
    let mut inorder_map: HashMap<i32, i32> = HashMap::new();
    for i in 0..inorder.len() {
        inorder_map.insert(inorder[i], i as i32);
    }
    let root = dfs(preorder, &inorder_map, 0, 0, inorder.len() as i32 - 1);
    root
}
build_tree.c
/* Build binary tree: divide and conquer */
TreeNode *dfs(int *preorder, int *inorderMap, int i, int l, int r, int size) {
    // Terminate when the subtree interval is empty
    if (r - l < 0)
        return NULL;
    // Initialize the root node
    TreeNode *root = (TreeNode *)malloc(sizeof(TreeNode));
    root->val = preorder[i];
    root->left = NULL;
    root->right = NULL;
    // Query m to divide the left and right subtrees
    int m = inorderMap[preorder[i]];
    // Subproblem: build the left subtree
    root->left = dfs(preorder, inorderMap, i + 1, l, m - 1, size);
    // Subproblem: build the right subtree
    root->right = dfs(preorder, inorderMap, i + 1 + m - l, m + 1, r, size);
    // Return the root node
    return root;
}

/* Build binary tree */
TreeNode *buildTree(int *preorder, int preorderSize, int *inorder, int inorderSize) {
    // Initialize hash map, storing the mapping from inorder elements to indices
    int *inorderMap = (int *)malloc(sizeof(int) * MAX_SIZE);
    for (int i = 0; i < inorderSize; i++) {
        inorderMap[inorder[i]] = i;
    }
    TreeNode *root = dfs(preorder, inorderMap, 0, 0, inorderSize - 1, inorderSize);
    free(inorderMap);
    return root;
}
build_tree.kt
/* Build binary tree: divide and conquer */
fun dfs(
    preorder: IntArray,
    inorderMap: Map<Int?, Int?>,
    i: Int,
    l: Int,
    r: Int
): TreeNode? {
    // Terminate when the subtree interval is empty
    if (r - l < 0) return null
    // Initialize the root node
    val root = TreeNode(preorder[i])
    // Query m to divide the left and right subtrees
    val m = inorderMap[preorder[i]]!!
    // Subproblem: build the left subtree
    root.left = dfs(preorder, inorderMap, i + 1, l, m - 1)
    // Subproblem: build the right subtree
    root.right = dfs(preorder, inorderMap, i + 1 + m - l, m + 1, r)
    // Return the root node
    return root
}

/* Build binary tree */
fun buildTree(preorder: IntArray, inorder: IntArray): TreeNode? {
    // Initialize hash map, storing the mapping from inorder elements to indices
    val inorderMap = HashMap<Int?, Int?>()
    for (i in inorder.indices) {
        inorderMap[inorder[i]] = i
    }
    val root = dfs(preorder, inorderMap, 0, 0, inorder.size - 1)
    return root
}
build_tree.rb
### Build binary tree: divide and conquer ###
def dfs(preorder, inorder_map, i, l, r)
  # Terminate when the subtree interval is empty
  return if r - l < 0

  # Initialize the root node
  root = TreeNode.new(preorder[i])
  # Query m to divide the left and right subtrees
  m = inorder_map[preorder[i]]
  # Subproblem: build the left subtree
  root.left = dfs(preorder, inorder_map, i + 1, l, m - 1)
  # Subproblem: build the right subtree
  root.right = dfs(preorder, inorder_map, i + 1 + m - l, m + 1, r)

  # Return the root node
  root
end

### Build binary tree ###
def build_tree(preorder, inorder)
  # Initialize hash map, storing the mapping from inorder elements to indices
  inorder_map = {}
  inorder.each_with_index { |val, i| inorder_map[val] = i }
  dfs(preorder, inorder_map, 0, 0, inorder.length - 1)
end

Figure 12-8 shows the recursive process of building the binary tree. Each node is established during the downward "recursion" process, while each edge (reference) is established during the upward "return" process.

Recursive process of building a binary tree

built_tree_step2

built_tree_step3

built_tree_step4

built_tree_step5

built_tree_step6

built_tree_step7

built_tree_step8

built_tree_step9

Figure 12-8   Recursive process of building a binary tree

The division results of the preorder traversal preorder and inorder traversal inorder within each recursive function are shown in Figure 12-9.

Division results in each recursive function

Figure 12-9   Division results in each recursive function

Let the number of nodes in the tree be \(n\). Initializing each node (executing one recursive function dfs()) takes \(O(1)\) time. Therefore, the overall time complexity is \(O(n)\).

The hash table stores the mapping from inorder elements to their indices, with a space complexity of \(O(n)\). In the worst case, when the binary tree degenerates into a linked list, the recursion depth reaches \(n\), using \(O(n)\) stack frame space. Therefore, the overall space complexity is \(O(n)\).

Feel free to drop your insights, questions or suggestions