Skip to content

2.3   Time complexity

The runtime can intuitively assess the efficiency of an algorithm. How can we accurately estimate the runtime of a piece of an algorithm?

  1. Determining the Running Platform: This includes hardware configuration, programming language, system environment, etc., all of which can affect the efficiency of code execution.
  2. Evaluating the Run Time for Various Computational Operations: For instance, an addition operation + might take 1 ns, a multiplication operation * might take 10 ns, a print operation print() might take 5 ns, etc.
  3. Counting All the Computational Operations in the Code: Summing the execution times of all these operations gives the total run time.

For example, consider the following code with an input size of \(n\):

# Under an operating platform
def algorithm(n: int):
    a = 2      # 1 ns
    a = a + 1  # 1 ns
    a = a * 2  # 10 ns
    # Cycle n times
    for _ in range(n):  # 1 ns
        print(0)        # 5 ns
// Under a particular operating platform
void algorithm(int n) {
    int a = 2;  // 1 ns
    a = a + 1;  // 1 ns
    a = a * 2;  // 10 ns
    // Loop n times
    for (int i = 0; i < n; i++) {  // 1 ns , every round i++ is executed
        cout << 0 << endl;         // 5 ns
    }
}
// Under a particular operating platform
void algorithm(int n) {
    int a = 2;  // 1 ns
    a = a + 1;  // 1 ns
    a = a * 2;  // 10 ns
    // Loop n times
    for (int i = 0; i < n; i++) {  // 1 ns , every round i++ is executed
        System.out.println(0);     // 5 ns
    }
}
// Under a particular operating platform
void Algorithm(int n) {
    int a = 2;  // 1 ns
    a = a + 1;  // 1 ns
    a = a * 2;  // 10 ns
    // Loop n times
    for (int i = 0; i < n; i++) {  // 1 ns , every round i++ is executed
        Console.WriteLine(0);      // 5 ns
    }
}
// Under a particular operating platform
func algorithm(n int) {
    a := 2     // 1 ns
    a = a + 1  // 1 ns
    a = a * 2  // 10 ns
    // Loop n times
    for i := 0; i < n; i++ {  // 1 ns
        fmt.Println(a)        // 5 ns
    }
}
// Under a particular operating platform
func algorithm(n: Int) {
    var a = 2 // 1 ns
    a = a + 1 // 1 ns
    a = a * 2 // 10 ns
    // Loop n times
    for _ in 0 ..< n { // 1 ns
        print(0) // 5 ns
    }
}
// Under a particular operating platform
function algorithm(n) {
    var a = 2; // 1 ns
    a = a + 1; // 1 ns
    a = a * 2; // 10 ns
    // Loop n times
    for(let i = 0; i < n; i++) { // 1 ns , every round i++ is executed
        console.log(0); // 5 ns
    }
}
// Under a particular operating platform
function algorithm(n: number): void {
    var a: number = 2; // 1 ns
    a = a + 1; // 1 ns
    a = a * 2; // 10 ns
    // Loop n times
    for(let i = 0; i < n; i++) { // 1 ns , every round i++ is executed
        console.log(0); // 5 ns
    }
}
// Under a particular operating platform
void algorithm(int n) {
  int a = 2; // 1 ns
  a = a + 1; // 1 ns
  a = a * 2; // 10 ns
  // Loop n times
  for (int i = 0; i < n; i++) { // 1 ns , every round i++ is executed
    print(0); // 5 ns
  }
}
// Under a particular operating platform
fn algorithm(n: i32) {
    let mut a = 2;      // 1 ns
    a = a + 1;          // 1 ns
    a = a * 2;          // 10 ns
    // Loop n times
    for _ in 0..n {     // 1 ns for each round i++
        println!("{}", 0);  // 5 ns
    }
}
// Under a particular operating platform
void algorithm(int n) {
    int a = 2;  // 1 ns
    a = a + 1;  // 1 ns
    a = a * 2;  // 10 ns
    // Loop n times
    for (int i = 0; i < n; i++) {   // 1 ns , every round i++ is executed
        printf("%d", 0);            // 5 ns
    }
}

// Under a particular operating platform
fn algorithm(n: usize) void {
    var a: i32 = 2; // 1 ns
    a += 1; // 1 ns
    a *= 2; // 10 ns
    // Loop n times
    for (0..n) |_| { // 1 ns
        std.debug.print("{}\n", .{0}); // 5 ns
    }
}

Using the above method, the run time of the algorithm can be calculated as \((6n + 12)\) ns:

\[ 1 + 1 + 10 + (1 + 5) \times n = 6n + 12 \]

However, in practice, counting the run time of an algorithm is neither practical nor reasonable. First, we don't want to tie the estimated time to the running platform, as algorithms need to run on various platforms. Second, it's challenging to know the run time for each type of operation, making the estimation process difficult.

2.3.1   Assessing time growth trend

Time complexity analysis does not count the algorithm's run time, but rather the growth trend of the run time as the data volume increases.

Let's understand this concept of "time growth trend" with an example. Assume the input data size is \(n\), and consider three algorithms A, B, and C:

# Time complexity of algorithm A: constant order
def algorithm_A(n: int):
    print(0)
# Time complexity of algorithm B: linear order
def algorithm_B(n: int):
    for _ in range(n):
        print(0)
# Time complexity of algorithm C: constant order
def algorithm_C(n: int):
    for _ in range(1000000):
        print(0)
// Time complexity of algorithm A: constant order
void algorithm_A(int n) {
    cout << 0 << endl;
}
// Time complexity of algorithm B: linear order
void algorithm_B(int n) {
    for (int i = 0; i < n; i++) {
        cout << 0 << endl;
    }
}
// Time complexity of algorithm C: constant order
void algorithm_C(int n) {
    for (int i = 0; i < 1000000; i++) {
        cout << 0 << endl;
    }
}
// Time complexity of algorithm A: constant order
void algorithm_A(int n) {
    System.out.println(0);
}
// Time complexity of algorithm B: linear order
void algorithm_B(int n) {
    for (int i = 0; i < n; i++) {
        System.out.println(0);
    }
}
// Time complexity of algorithm C: constant order
void algorithm_C(int n) {
    for (int i = 0; i < 1000000; i++) {
        System.out.println(0);
    }
}
// Time complexity of algorithm A: constant order
void AlgorithmA(int n) {
    Console.WriteLine(0);
}
// Time complexity of algorithm B: linear order
void AlgorithmB(int n) {
    for (int i = 0; i < n; i++) {
        Console.WriteLine(0);
    }
}
// Time complexity of algorithm C: constant order
void AlgorithmC(int n) {
    for (int i = 0; i < 1000000; i++) {
        Console.WriteLine(0);
    }
}
// Time complexity of algorithm A: constant order
func algorithm_A(n int) {
    fmt.Println(0)
}
// Time complexity of algorithm B: linear order
func algorithm_B(n int) {
    for i := 0; i < n; i++ {
        fmt.Println(0)
    }
}
// Time complexity of algorithm C: constant order
func algorithm_C(n int) {
    for i := 0; i < 1000000; i++ {
        fmt.Println(0)
    }
}
// Time complexity of algorithm A: constant order
func algorithmA(n: Int) {
    print(0)
}

// Time complexity of algorithm B: linear order
func algorithmB(n: Int) {
    for _ in 0 ..< n {
        print(0)
    }
}

// Time complexity of algorithm C: constant order
func algorithmC(n: Int) {
    for _ in 0 ..< 1_000_000 {
        print(0)
    }
}
// Time complexity of algorithm A: constant order
function algorithm_A(n) {
    console.log(0);
}
// Time complexity of algorithm B: linear order
function algorithm_B(n) {
    for (let i = 0; i < n; i++) {
        console.log(0);
    }
}
// Time complexity of algorithm C: constant order
function algorithm_C(n) {
    for (let i = 0; i < 1000000; i++) {
        console.log(0);
    }
}
// Time complexity of algorithm A: constant order
function algorithm_A(n: number): void {
    console.log(0);
}
// Time complexity of algorithm B: linear order
function algorithm_B(n: number): void {
    for (let i = 0; i < n; i++) {
        console.log(0);
    }
}
// Time complexity of algorithm C: constant order
function algorithm_C(n: number): void {
    for (let i = 0; i < 1000000; i++) {
        console.log(0);
    }
}
// Time complexity of algorithm A: constant order
void algorithmA(int n) {
  print(0);
}
// Time complexity of algorithm B: linear order
void algorithmB(int n) {
  for (int i = 0; i < n; i++) {
    print(0);
  }
}
// Time complexity of algorithm C: constant order
void algorithmC(int n) {
  for (int i = 0; i < 1000000; i++) {
    print(0);
  }
}
// Time complexity of algorithm A: constant order
fn algorithm_A(n: i32) {
    println!("{}", 0);
}
// Time complexity of algorithm B: linear order
fn algorithm_B(n: i32) {
    for _ in 0..n {
        println!("{}", 0);
    }
}
// Time complexity of algorithm C: constant order
fn algorithm_C(n: i32) {
    for _ in 0..1000000 {
        println!("{}", 0);
    }
}
// Time complexity of algorithm A: constant order
void algorithm_A(int n) {
    printf("%d", 0);
}
// Time complexity of algorithm B: linear order
void algorithm_B(int n) {
    for (int i = 0; i < n; i++) {
        printf("%d", 0);
    }
}
// Time complexity of algorithm C: constant order
void algorithm_C(int n) {
    for (int i = 0; i < 1000000; i++) {
        printf("%d", 0);
    }
}

// Time complexity of algorithm A: constant order
fn algorithm_A(n: usize) void {
    _ = n;
    std.debug.print("{}\n", .{0});
}
// Time complexity of algorithm B: linear order
fn algorithm_B(n: i32) void {
    for (0..n) |_| {
        std.debug.print("{}\n", .{0});
    }
}
// Time complexity of algorithm C: constant order
fn algorithm_C(n: i32) void {
    _ = n;
    for (0..1000000) |_| {
        std.debug.print("{}\n", .{0});
    }
}

Figure 2-7 shows the time complexities of these three algorithms.

  • Algorithm A has just one print operation, and its run time does not grow with \(n\). Its time complexity is considered "constant order."
  • Algorithm B involves a print operation looping \(n\) times, and its run time grows linearly with \(n\). Its time complexity is "linear order."
  • Algorithm C has a print operation looping 1,000,000 times. Although it takes a long time, it is independent of the input data size \(n\). Therefore, the time complexity of C is the same as A, which is "constant order."

Time growth trend of algorithms a, b, and c

Figure 2-7   Time growth trend of algorithms a, b, and c

Compared to directly counting the run time of an algorithm, what are the characteristics of time complexity analysis?

  • Time complexity effectively assesses algorithm efficiency. For instance, algorithm B has linearly growing run time, which is slower than algorithm A when \(n > 1\) and slower than C when \(n > 1,000,000\). In fact, as long as the input data size \(n\) is sufficiently large, a "constant order" complexity algorithm will always be better than a "linear order" one, demonstrating the essence of time growth trend.
  • Time complexity analysis is more straightforward. Obviously, the running platform and the types of computational operations are irrelevant to the trend of run time growth. Therefore, in time complexity analysis, we can simply treat the execution time of all computational operations as the same "unit time," simplifying the "computational operation run time count" to a "computational operation count." This significantly reduces the complexity of estimation.
  • Time complexity has its limitations. For example, although algorithms A and C have the same time complexity, their actual run times can be quite different. Similarly, even though algorithm B has a higher time complexity than C, it is clearly superior when the input data size \(n\) is small. In these cases, it's difficult to judge the efficiency of algorithms based solely on time complexity. Nonetheless, despite these issues, complexity analysis remains the most effective and commonly used method for evaluating algorithm efficiency.

2.3.2   Asymptotic upper bound

Consider a function with an input size of \(n\):

def algorithm(n: int):
    a = 1      # +1
    a = a + 1  # +1
    a = a * 2  # +1
    # Cycle n times
    for i in range(n):  # +1
        print(0)        # +1
void algorithm(int n) {
    int a = 1;  // +1
    a = a + 1;  // +1
    a = a * 2;  // +1
    // Loop n times
    for (int i = 0; i < n; i++) { // +1 (execute i ++ every round)
        cout << 0 << endl;    // +1
    }
}
void algorithm(int n) {
    int a = 1;  // +1
    a = a + 1;  // +1
    a = a * 2;  // +1
    // Loop n times
    for (int i = 0; i < n; i++) { // +1 (execute i ++ every round)
        System.out.println(0);    // +1
    }
}
void Algorithm(int n) {
    int a = 1;  // +1
    a = a + 1;  // +1
    a = a * 2;  // +1
    // Loop n times
    for (int i = 0; i < n; i++) {   // +1 (execute i ++ every round)
        Console.WriteLine(0);   // +1
    }
}
func algorithm(n int) {
    a := 1      // +1
    a = a + 1   // +1
    a = a * 2   // +1
    // Loop n times
    for i := 0; i < n; i++ {   // +1
        fmt.Println(a)         // +1
    }
}
func algorithm(n: Int) {
    var a = 1 // +1
    a = a + 1 // +1
    a = a * 2 // +1
    // Loop n times
    for _ in 0 ..< n { // +1
        print(0) // +1
    }
}
function algorithm(n) {
    var a = 1; // +1
    a += 1; // +1
    a *= 2; // +1
    // Loop n times
    for(let i = 0; i < n; i++){ // +1 (execute i ++ every round)
        console.log(0); // +1
    }
}
function algorithm(n: number): void{
    var a: number = 1; // +1
    a += 1; // +1
    a *= 2; // +1
    // Loop n times
    for(let i = 0; i < n; i++){ // +1 (execute i ++ every round)
        console.log(0); // +1
    }
}
void algorithm(int n) {
  int a = 1; // +1
  a = a + 1; // +1
  a = a * 2; // +1
  // Loop n times
  for (int i = 0; i < n; i++) { // +1 (execute i ++ every round)
    print(0); // +1
  }
}
fn algorithm(n: i32) {
    let mut a = 1;   // +1
    a = a + 1;      // +1
    a = a * 2;      // +1

    // Loop n times
    for _ in 0..n { // +1 (execute i ++ every round)
        println!("{}", 0); // +1
    }
}
void algorithm(int n) {
    int a = 1;  // +1
    a = a + 1;  // +1
    a = a * 2;  // +1
    // Loop n times
    for (int i = 0; i < n; i++) {   // +1 (execute i ++ every round)
        printf("%d", 0);            // +1
    }
} 

fn algorithm(n: usize) void {
    var a: i32 = 1; // +1
    a += 1; // +1
    a *= 2; // +1
    // Loop n times
    for (0..n) |_| { // +1 (execute i ++ every round)
        std.debug.print("{}\n", .{0}); // +1
    }
}

Given a function that represents the number of operations of an algorithm as a function of the input size \(n\), denoted as \(T(n)\), consider the following example:

\[ T(n) = 3 + 2n \]

Since \(T(n)\) is a linear function, its growth trend is linear, and therefore, its time complexity is of linear order, denoted as \(O(n)\). This mathematical notation, known as big-O notation, represents the asymptotic upper bound of the function \(T(n)\).

In essence, time complexity analysis is about finding the asymptotic upper bound of the "number of operations \(T(n)\)". It has a precise mathematical definition.

Asymptotic Upper Bound

If there exist positive real numbers \(c\) and \(n_0\) such that for all \(n > n_0\), \(T(n) \leq c \cdot f(n)\), then \(f(n)\) is considered an asymptotic upper bound of \(T(n)\), denoted as \(T(n) = O(f(n))\).

As shown in Figure 2-8, calculating the asymptotic upper bound involves finding a function \(f(n)\) such that, as \(n\) approaches infinity, \(T(n)\) and \(f(n)\) have the same growth order, differing only by a constant factor \(c\).

Asymptotic upper bound of a function

Figure 2-8   Asymptotic upper bound of a function

2.3.3   Calculation method

While the concept of asymptotic upper bound might seem mathematically dense, you don't need to fully grasp it right away. Let's first understand the method of calculation, which can be practiced and comprehended over time.

Once \(f(n)\) is determined, we obtain the time complexity \(O(f(n))\). But how do we determine the asymptotic upper bound \(f(n)\)? This process generally involves two steps: counting the number of operations and determining the asymptotic upper bound.

1.   Step 1: counting the number of operations

This step involves going through the code line by line. However, due to the presence of the constant \(c\) in \(c \cdot f(n)\), all coefficients and constant terms in \(T(n)\) can be ignored. This principle allows for simplification techniques in counting operations.

  1. Ignore constant terms in \(T(n)\), as they do not affect the time complexity being independent of \(n\).
  2. Omit all coefficients. For example, looping \(2n\), \(5n + 1\) times, etc., can be simplified to \(n\) times since the coefficient before \(n\) does not impact the time complexity.
  3. Use multiplication for nested loops. The total number of operations equals the product of the number of operations in each loop, applying the simplification techniques from points 1 and 2 for each loop level.

Given a function, we can use these techniques to count operations:

def algorithm(n: int):
    a = 1      # +0 (trick 1)
    a = a + n  # +0 (trick 1)
    # +n (technique 2)
    for i in range(5 * n + 1):
        print(0)
    # +n*n (technique 3)
    for i in range(2 * n):
        for j in range(n + 1):
            print(0)
void algorithm(int n) {
    int a = 1;  // +0 (trick 1)
    a = a + n;  // +0 (trick 1)
    // +n (technique 2)
    for (int i = 0; i < 5 * n + 1; i++) {
        cout << 0 << endl;
    }
    // +n*n (technique 3)
    for (int i = 0; i < 2 * n; i++) {
        for (int j = 0; j < n + 1; j++) {
            cout << 0 << endl;
        }
    }
}
void algorithm(int n) {
    int a = 1;  // +0 (trick 1)
    a = a + n;  // +0 (trick 1)
    // +n (technique 2)
    for (int i = 0; i < 5 * n + 1; i++) {
        System.out.println(0);
    }
    // +n*n (technique 3)
    for (int i = 0; i < 2 * n; i++) {
        for (int j = 0; j < n + 1; j++) {
            System.out.println(0);
        }
    }
}
void Algorithm(int n) {
    int a = 1;  // +0 (trick 1)
    a = a + n;  // +0 (trick 1)
    // +n (technique 2)
    for (int i = 0; i < 5 * n + 1; i++) {
        Console.WriteLine(0);
    }
    // +n*n (technique 3)
    for (int i = 0; i < 2 * n; i++) {
        for (int j = 0; j < n + 1; j++) {
            Console.WriteLine(0);
        }
    }
}
func algorithm(n int) {
    a := 1     // +0 (trick 1)
    a = a + n  // +0 (trick 1)
    // +n (technique 2)
    for i := 0; i < 5 * n + 1; i++ {
        fmt.Println(0)
    }
    // +n*n (technique 3)
    for i := 0; i < 2 * n; i++ {
        for j := 0; j < n + 1; j++ {
            fmt.Println(0)
        }
    }
}
func algorithm(n: Int) {
    var a = 1 // +0 (trick 1)
    a = a + n // +0 (trick 1)
    // +n (technique 2)
    for _ in 0 ..< (5 * n + 1) {
        print(0)
    }
    // +n*n (technique 3)
    for _ in 0 ..< (2 * n) {
        for _ in 0 ..< (n + 1) {
            print(0)
        }
    }
}
function algorithm(n) {
    let a = 1;  // +0 (trick 1)
    a = a + n;  // +0 (trick 1)
    // +n (technique 2)
    for (let i = 0; i < 5 * n + 1; i++) {
        console.log(0);
    }
    // +n*n (technique 3)
    for (let i = 0; i < 2 * n; i++) {
        for (let j = 0; j < n + 1; j++) {
            console.log(0);
        }
    }
}
function algorithm(n: number): void {
    let a = 1;  // +0 (trick 1)
    a = a + n;  // +0 (trick 1)
    // +n (technique 2)
    for (let i = 0; i < 5 * n + 1; i++) {
        console.log(0);
    }
    // +n*n (technique 3)
    for (let i = 0; i < 2 * n; i++) {
        for (let j = 0; j < n + 1; j++) {
            console.log(0);
        }
    }
}
void algorithm(int n) {
  int a = 1; // +0 (trick 1)
  a = a + n; // +0 (trick 1)
  // +n (technique 2)
  for (int i = 0; i < 5 * n + 1; i++) {
    print(0);
  }
  // +n*n (technique 3)
  for (int i = 0; i < 2 * n; i++) {
    for (int j = 0; j < n + 1; j++) {
      print(0);
    }
  }
}
fn algorithm(n: i32) {
    let mut a = 1;     // +0 (trick 1)
    a = a + n;        // +0 (trick 1)

    // +n (technique 2)
    for i in 0..(5 * n + 1) {
        println!("{}", 0);
    }

    // +n*n (technique 3)
    for i in 0..(2 * n) {
        for j in 0..(n + 1) {
            println!("{}", 0);
        }
    }
}
void algorithm(int n) {
    int a = 1;  // +0 (trick 1)
    a = a + n;  // +0 (trick 1)
    // +n (technique 2)
    for (int i = 0; i < 5 * n + 1; i++) {
        printf("%d", 0);
    }
    // +n*n (technique 3)
    for (int i = 0; i < 2 * n; i++) {
        for (int j = 0; j < n + 1; j++) {
            printf("%d", 0);
        }
    }
}

fn algorithm(n: usize) void {
    var a: i32 = 1;     // +0 (trick 1)
    a = a + @as(i32, @intCast(n));        // +0 (trick 1)

    // +n (technique 2)
    for(0..(5 * n + 1)) |_| {
        std.debug.print("{}\n", .{0});
    }

    // +n*n (technique 3)
    for(0..(2 * n)) |_| {
        for(0..(n + 1)) |_| {
            std.debug.print("{}\n", .{0});
        }
    }
}

The formula below shows the counting results before and after simplification, both leading to a time complexity of \(O(n^2)\):

\[ \begin{aligned} T(n) & = 2n(n + 1) + (5n + 1) + 2 & \text{Complete Count (-.-|||)} \newline & = 2n^2 + 7n + 3 \newline T(n) & = n^2 + n & \text{Simplified Count (o.O)} \end{aligned} \]

2.   Step 2: determining the asymptotic upper bound

The time complexity is determined by the highest order term in \(T(n)\). This is because, as \(n\) approaches infinity, the highest order term dominates, rendering the influence of other terms negligible.

The following table illustrates examples of different operation counts and their corresponding time complexities. Some exaggerated values are used to emphasize that coefficients cannot alter the order of growth. When \(n\) becomes very large, these constants become insignificant.

Table: Time complexity for different operation counts

Operation Count \(T(n)\) Time Complexity \(O(f(n))\)
\(100000\) \(O(1)\)
\(3n + 2\) \(O(n)\)
\(2n^2 + 3n + 2\) \(O(n^2)\)
\(n^3 + 10000n^2\) \(O(n^3)\)
\(2^n + 10000n^{10000}\) \(O(2^n)\)

2.3.4   Common types of time complexity

Let's consider the input data size as \(n\). The common types of time complexities are shown in Figure 2-9, arranged from lowest to highest:

\[ \begin{aligned} & O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(2^n) < O(n!) \newline & \text{Constant} < \text{Log} < \text{Linear} < \text{Linear-Log} < \text{Quadratic} < \text{Exp} < \text{Factorial} \end{aligned} \]

Common types of time complexity

Figure 2-9   Common types of time complexity

1.   Constant order \(O(1)\)

Constant order means the number of operations is independent of the input data size \(n\). In the following function, although the number of operations size might be large, the time complexity remains \(O(1)\) as it's unrelated to \(n\):

time_complexity.py
def constant(n: int) -> int:
    """Constant complexity"""
    count = 0
    size = 100000
    for _ in range(size):
        count += 1
    return count
time_complexity.cpp
/* Constant complexity */
int constant(int n) {
    int count = 0;
    int size = 100000;
    for (int i = 0; i < size; i++)
        count++;
    return count;
}
time_complexity.java
/* Constant complexity */
int constant(int n) {
    int count = 0;
    int size = 100000;
    for (int i = 0; i < size; i++)
        count++;
    return count;
}
time_complexity.cs
[class]{time_complexity}-[func]{Constant}
time_complexity.go
[class]{}-[func]{constant}
time_complexity.swift
[class]{}-[func]{constant}
time_complexity.js
[class]{}-[func]{constant}
time_complexity.ts
[class]{}-[func]{constant}
time_complexity.dart
[class]{}-[func]{constant}
time_complexity.rs
[class]{}-[func]{constant}
time_complexity.c
[class]{}-[func]{constant}
time_complexity.kt
[class]{}-[func]{constant}
time_complexity.rb
[class]{}-[func]{constant}
time_complexity.zig
[class]{}-[func]{constant}

2.   Linear order \(O(n)\)

Linear order indicates the number of operations grows linearly with the input data size \(n\). Linear order commonly appears in single-loop structures:

time_complexity.py
def linear(n: int) -> int:
    """Linear complexity"""
    count = 0
    for _ in range(n):
        count += 1
    return count
time_complexity.cpp
/* Linear complexity */
int linear(int n) {
    int count = 0;
    for (int i = 0; i < n; i++)
        count++;
    return count;
}
time_complexity.java
/* Linear complexity */
int linear(int n) {
    int count = 0;
    for (int i = 0; i < n; i++)
        count++;
    return count;
}
time_complexity.cs
[class]{time_complexity}-[func]{Linear}
time_complexity.go
[class]{}-[func]{linear}
time_complexity.swift
[class]{}-[func]{linear}
time_complexity.js
[class]{}-[func]{linear}
time_complexity.ts
[class]{}-[func]{linear}
time_complexity.dart
[class]{}-[func]{linear}
time_complexity.rs
[class]{}-[func]{linear}
time_complexity.c
[class]{}-[func]{linear}
time_complexity.kt
[class]{}-[func]{linear}
time_complexity.rb
[class]{}-[func]{linear}
time_complexity.zig
[class]{}-[func]{linear}

Operations like array traversal and linked list traversal have a time complexity of \(O(n)\), where \(n\) is the length of the array or list:

time_complexity.py
def array_traversal(nums: list[int]) -> int:
    """Linear complexity (traversing an array)"""
    count = 0
    # Loop count is proportional to the length of the array
    for num in nums:
        count += 1
    return count
time_complexity.cpp
/* Linear complexity (traversing an array) */
int arrayTraversal(vector<int> &nums) {
    int count = 0;
    // Loop count is proportional to the length of the array
    for (int num : nums) {
        count++;
    }
    return count;
}
time_complexity.java
/* Linear complexity (traversing an array) */
int arrayTraversal(int[] nums) {
    int count = 0;
    // Loop count is proportional to the length of the array
    for (int num : nums) {
        count++;
    }
    return count;
}
time_complexity.cs
[class]{time_complexity}-[func]{ArrayTraversal}
time_complexity.go
[class]{}-[func]{arrayTraversal}
time_complexity.swift
[class]{}-[func]{arrayTraversal}
time_complexity.js
[class]{}-[func]{arrayTraversal}
time_complexity.ts
[class]{}-[func]{arrayTraversal}
time_complexity.dart
[class]{}-[func]{arrayTraversal}
time_complexity.rs
[class]{}-[func]{array_traversal}
time_complexity.c
[class]{}-[func]{arrayTraversal}
time_complexity.kt
[class]{}-[func]{arrayTraversal}
time_complexity.rb
[class]{}-[func]{array_traversal}
time_complexity.zig
[class]{}-[func]{arrayTraversal}

It's important to note that the input data size \(n\) should be determined based on the type of input data. For example, in the first example, \(n\) represents the input data size, while in the second example, the length of the array \(n\) is the data size.

3.   Quadratic order \(O(n^2)\)

Quadratic order means the number of operations grows quadratically with the input data size \(n\). Quadratic order typically appears in nested loops, where both the outer and inner loops have a time complexity of \(O(n)\), resulting in an overall complexity of \(O(n^2)\):

time_complexity.py
def quadratic(n: int) -> int:
    """Quadratic complexity"""
    count = 0
    # Loop count is squared in relation to the data size n
    for i in range(n):
        for j in range(n):
            count += 1
    return count
time_complexity.cpp
/* Quadratic complexity */
int quadratic(int n) {
    int count = 0;
    // Loop count is squared in relation to the data size n
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            count++;
        }
    }
    return count;
}
time_complexity.java
/* Quadratic complexity */
int quadratic(int n) {
    int count = 0;
    // Loop count is squared in relation to the data size n
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            count++;
        }
    }
    return count;
}
time_complexity.cs
[class]{time_complexity}-[func]{Quadratic}
time_complexity.go
[class]{}-[func]{quadratic}
time_complexity.swift
[class]{}-[func]{quadratic}
time_complexity.js
[class]{}-[func]{quadratic}
time_complexity.ts
[class]{}-[func]{quadratic}
time_complexity.dart
[class]{}-[func]{quadratic}
time_complexity.rs
[class]{}-[func]{quadratic}
time_complexity.c
[class]{}-[func]{quadratic}
time_complexity.kt
[class]{}-[func]{quadratic}
time_complexity.rb
[class]{}-[func]{quadratic}
time_complexity.zig
[class]{}-[func]{quadratic}

Figure 2-10 compares constant order, linear order, and quadratic order time complexities.

Constant, linear, and quadratic order time complexities

Figure 2-10   Constant, linear, and quadratic order time complexities

For instance, in bubble sort, the outer loop runs \(n - 1\) times, and the inner loop runs \(n-1\), \(n-2\), ..., \(2\), \(1\) times, averaging \(n / 2\) times, resulting in a time complexity of \(O((n - 1) n / 2) = O(n^2)\):

time_complexity.py
def bubble_sort(nums: list[int]) -> int:
    """Quadratic complexity (bubble sort)"""
    count = 0  # Counter
    # Outer loop: unsorted range is [0, i]
    for i in range(len(nums) - 1, 0, -1):
        # Inner loop: swap the largest element in the unsorted range [0, i] to the right end of the range
        for j in range(i):
            if nums[j] > nums[j + 1]:
                # Swap nums[j] and nums[j + 1]
                tmp: int = nums[j]
                nums[j] = nums[j + 1]
                nums[j + 1] = tmp
                count += 3  # Element swap includes 3 individual operations
    return count
time_complexity.cpp
/* Quadratic complexity (bubble sort) */
int bubbleSort(vector<int> &nums) {
    int count = 0; // Counter
    // Outer loop: unsorted range is [0, i]
    for (int i = nums.size() - 1; i > 0; i--) {
        // Inner loop: swap the largest element in the unsorted range [0, i] to the right end of the range
        for (int j = 0; j < i; j++) {
            if (nums[j] > nums[j + 1]) {
                // Swap nums[j] and nums[j + 1]
                int tmp = nums[j];
                nums[j] = nums[j + 1];
                nums[j + 1] = tmp;
                count += 3; // Element swap includes 3 individual operations
            }
        }
    }
    return count;
}
time_complexity.java
/* Quadratic complexity (bubble sort) */
int bubbleSort(int[] nums) {
    int count = 0; // Counter
    // Outer loop: unsorted range is [0, i]
    for (int i = nums.length - 1; i > 0; i--) {
        // Inner loop: swap the largest element in the unsorted range [0, i] to the right end of the range
        for (int j = 0; j < i; j++) {
            if (nums[j] > nums[j + 1]) {
                // Swap nums[j] and nums[j + 1]
                int tmp = nums[j];
                nums[j] = nums[j + 1];
                nums[j + 1] = tmp;
                count += 3; // Element swap includes 3 individual operations
            }
        }
    }
    return count;
}
time_complexity.cs
[class]{time_complexity}-[func]{BubbleSort}
time_complexity.go
[class]{}-[func]{bubbleSort}
time_complexity.swift
[class]{}-[func]{bubbleSort}
time_complexity.js
[class]{}-[func]{bubbleSort}
time_complexity.ts
[class]{}-[func]{bubbleSort}
time_complexity.dart
[class]{}-[func]{bubbleSort}
time_complexity.rs
[class]{}-[func]{bubble_sort}
time_complexity.c
[class]{}-[func]{bubbleSort}
time_complexity.kt
[class]{}-[func]{bubbleSort}
time_complexity.rb
[class]{}-[func]{bubble_sort}
time_complexity.zig
[class]{}-[func]{bubbleSort}

4.   Exponential order \(O(2^n)\)

Biological "cell division" is a classic example of exponential order growth: starting with one cell, it becomes two after one division, four after two divisions, and so on, resulting in \(2^n\) cells after \(n\) divisions.

Figure 2-11 and code simulate the cell division process, with a time complexity of \(O(2^n)\):

time_complexity.py
def exponential(n: int) -> int:
    """Exponential complexity (loop implementation)"""
    count = 0
    base = 1
    # Cells split into two every round, forming the sequence 1, 2, 4, 8, ..., 2^(n-1)
    for _ in range(n):
        for _ in range(base):
            count += 1
        base *= 2
    # count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
    return count
time_complexity.cpp
/* Exponential complexity (loop implementation) */
int exponential(int n) {
    int count = 0, base = 1;
    // Cells split into two every round, forming the sequence 1, 2, 4, 8, ..., 2^(n-1)
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < base; j++) {
            count++;
        }
        base *= 2;
    }
    // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
    return count;
}
time_complexity.java
/* Exponential complexity (loop implementation) */
int exponential(int n) {
    int count = 0, base = 1;
    // Cells split into two every round, forming the sequence 1, 2, 4, 8, ..., 2^(n-1)
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < base; j++) {
            count++;
        }
        base *= 2;
    }
    // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
    return count;
}
time_complexity.cs
[class]{time_complexity}-[func]{Exponential}
time_complexity.go
[class]{}-[func]{exponential}
time_complexity.swift
[class]{}-[func]{exponential}
time_complexity.js
[class]{}-[func]{exponential}
time_complexity.ts
[class]{}-[func]{exponential}
time_complexity.dart
[class]{}-[func]{exponential}
time_complexity.rs
[class]{}-[func]{exponential}
time_complexity.c
[class]{}-[func]{exponential}
time_complexity.kt
[class]{}-[func]{exponential}
time_complexity.rb
[class]{}-[func]{exponential}
time_complexity.zig
[class]{}-[func]{exponential}

Exponential order time complexity

Figure 2-11   Exponential order time complexity

In practice, exponential order often appears in recursive functions. For example, in the code below, it recursively splits into two halves, stopping after \(n\) divisions:

time_complexity.py
def exp_recur(n: int) -> int:
    """Exponential complexity (recursive implementation)"""
    if n == 1:
        return 1
    return exp_recur(n - 1) + exp_recur(n - 1) + 1
time_complexity.cpp
/* Exponential complexity (recursive implementation) */
int expRecur(int n) {
    if (n == 1)
        return 1;
    return expRecur(n - 1) + expRecur(n - 1) + 1;
}
time_complexity.java
/* Exponential complexity (recursive implementation) */
int expRecur(int n) {
    if (n == 1)
        return 1;
    return expRecur(n - 1) + expRecur(n - 1) + 1;
}
time_complexity.cs
[class]{time_complexity}-[func]{ExpRecur}
time_complexity.go
[class]{}-[func]{expRecur}
time_complexity.swift
[class]{}-[func]{expRecur}
time_complexity.js
[class]{}-[func]{expRecur}
time_complexity.ts
[class]{}-[func]{expRecur}
time_complexity.dart
[class]{}-[func]{expRecur}
time_complexity.rs
[class]{}-[func]{exp_recur}
time_complexity.c
[class]{}-[func]{expRecur}
time_complexity.kt
[class]{}-[func]{expRecur}
time_complexity.rb
[class]{}-[func]{exp_recur}
time_complexity.zig
[class]{}-[func]{expRecur}

Exponential order growth is extremely rapid and is commonly seen in exhaustive search methods (brute force, backtracking, etc.). For large-scale problems, exponential order is unacceptable, often requiring dynamic programming or greedy algorithms as solutions.

5.   Logarithmic order \(O(\log n)\)

In contrast to exponential order, logarithmic order reflects situations where "the size is halved each round." Given an input data size \(n\), since the size is halved each round, the number of iterations is \(\log_2 n\), the inverse function of \(2^n\).

Figure 2-12 and code simulate the "halving each round" process, with a time complexity of \(O(\log_2 n)\), commonly abbreviated as \(O(\log n)\):

time_complexity.py
def logarithmic(n: int) -> int:
    """Logarithmic complexity (loop implementation)"""
    count = 0
    while n > 1:
        n = n / 2
        count += 1
    return count
time_complexity.cpp
/* Logarithmic complexity (loop implementation) */
int logarithmic(int n) {
    int count = 0;
    while (n > 1) {
        n = n / 2;
        count++;
    }
    return count;
}
time_complexity.java
/* Logarithmic complexity (loop implementation) */
int logarithmic(int n) {
    int count = 0;
    while (n > 1) {
        n = n / 2;
        count++;
    }
    return count;
}
time_complexity.cs
[class]{time_complexity}-[func]{Logarithmic}
time_complexity.go
[class]{}-[func]{logarithmic}
time_complexity.swift
[class]{}-[func]{logarithmic}
time_complexity.js
[class]{}-[func]{logarithmic}
time_complexity.ts
[class]{}-[func]{logarithmic}
time_complexity.dart
[class]{}-[func]{logarithmic}
time_complexity.rs
[class]{}-[func]{logarithmic}
time_complexity.c
[class]{}-[func]{logarithmic}
time_complexity.kt
[class]{}-[func]{logarithmic}
time_complexity.rb
[class]{}-[func]{logarithmic}
time_complexity.zig
[class]{}-[func]{logarithmic}

Logarithmic order time complexity

Figure 2-12   Logarithmic order time complexity

Like exponential order, logarithmic order also frequently appears in recursive functions. The code below forms a recursive tree of height \(\log_2 n\):

time_complexity.py
def log_recur(n: int) -> int:
    """Logarithmic complexity (recursive implementation)"""
    if n <= 1:
        return 0
    return log_recur(n / 2) + 1
time_complexity.cpp
/* Logarithmic complexity (recursive implementation) */
int logRecur(int n) {
    if (n <= 1)
        return 0;
    return logRecur(n / 2) + 1;
}
time_complexity.java
/* Logarithmic complexity (recursive implementation) */
int logRecur(int n) {
    if (n <= 1)
        return 0;
    return logRecur(n / 2) + 1;
}
time_complexity.cs
[class]{time_complexity}-[func]{LogRecur}
time_complexity.go
[class]{}-[func]{logRecur}
time_complexity.swift
[class]{}-[func]{logRecur}
time_complexity.js
[class]{}-[func]{logRecur}
time_complexity.ts
[class]{}-[func]{logRecur}
time_complexity.dart
[class]{}-[func]{logRecur}
time_complexity.rs
[class]{}-[func]{log_recur}
time_complexity.c
[class]{}-[func]{logRecur}
time_complexity.kt
[class]{}-[func]{logRecur}
time_complexity.rb
[class]{}-[func]{log_recur}
time_complexity.zig
[class]{}-[func]{logRecur}

Logarithmic order is typical in algorithms based on the divide-and-conquer strategy, embodying the "split into many" and "simplify complex problems" approach. It's slow-growing and is the most ideal time complexity after constant order.

What is the base of \(O(\log n)\)?

Technically, "splitting into \(m\)" corresponds to a time complexity of \(O(\log_m n)\). Using the logarithm base change formula, we can equate different logarithmic complexities:

\[ O(\log_m n) = O(\log_k n / \log_k m) = O(\log_k n) \]

This means the base \(m\) can be changed without affecting the complexity. Therefore, we often omit the base \(m\) and simply denote logarithmic order as \(O(\log n)\).

6.   Linear-logarithmic order \(O(n \log n)\)

Linear-logarithmic order often appears in nested loops, with the complexities of the two loops being \(O(\log n)\) and \(O(n)\) respectively. The related code is as follows:

time_complexity.py
def linear_log_recur(n: int) -> int:
    """Linear logarithmic complexity"""
    if n <= 1:
        return 1
    count: int = linear_log_recur(n // 2) + linear_log_recur(n // 2)
    for _ in range(n):
        count += 1
    return count
time_complexity.cpp
/* Linear logarithmic complexity */
int linearLogRecur(int n) {
    if (n <= 1)
        return 1;
    int count = linearLogRecur(n / 2) + linearLogRecur(n / 2);
    for (int i = 0; i < n; i++) {
        count++;
    }
    return count;
}
time_complexity.java
/* Linear logarithmic complexity */
int linearLogRecur(int n) {
    if (n <= 1)
        return 1;
    int count = linearLogRecur(n / 2) + linearLogRecur(n / 2);
    for (int i = 0; i < n; i++) {
        count++;
    }
    return count;
}
time_complexity.cs
[class]{time_complexity}-[func]{LinearLogRecur}
time_complexity.go
[class]{}-[func]{linearLogRecur}
time_complexity.swift
[class]{}-[func]{linearLogRecur}
time_complexity.js
[class]{}-[func]{linearLogRecur}
time_complexity.ts
[class]{}-[func]{linearLogRecur}
time_complexity.dart
[class]{}-[func]{linearLogRecur}
time_complexity.rs
[class]{}-[func]{linear_log_recur}
time_complexity.c
[class]{}-[func]{linearLogRecur}
time_complexity.kt
[class]{}-[func]{linearLogRecur}
time_complexity.rb
[class]{}-[func]{linear_log_recur}
time_complexity.zig
[class]{}-[func]{linearLogRecur}

Figure 2-13 demonstrates how linear-logarithmic order is generated. Each level of a binary tree has \(n\) operations, and the tree has \(\log_2 n + 1\) levels, resulting in a time complexity of \(O(n \log n)\).

Linear-logarithmic order time complexity

Figure 2-13   Linear-logarithmic order time complexity

Mainstream sorting algorithms typically have a time complexity of \(O(n \log n)\), such as quicksort, mergesort, and heapsort.

7.   Factorial order \(O(n!)\)

Factorial order corresponds to the mathematical problem of "full permutation." Given \(n\) distinct elements, the total number of possible permutations is:

\[ n! = n \times (n - 1) \times (n - 2) \times \dots \times 2 \times 1 \]

Factorials are typically implemented using recursion. As shown in the code and Figure 2-14, the first level splits into \(n\) branches, the second level into \(n - 1\) branches, and so on, stopping after the \(n\)th level:

time_complexity.py
def factorial_recur(n: int) -> int:
    """Factorial complexity (recursive implementation)"""
    if n == 0:
        return 1
    count = 0
    # From 1 split into n
    for _ in range(n):
        count += factorial_recur(n - 1)
    return count
time_complexity.cpp
/* Factorial complexity (recursive implementation) */
int factorialRecur(int n) {
    if (n == 0)
        return 1;
    int count = 0;
    // From 1 split into n
    for (int i = 0; i < n; i++) {
        count += factorialRecur(n - 1);
    }
    return count;
}
time_complexity.java
/* Factorial complexity (recursive implementation) */
int factorialRecur(int n) {
    if (n == 0)
        return 1;
    int count = 0;
    // From 1 split into n
    for (int i = 0; i < n; i++) {
        count += factorialRecur(n - 1);
    }
    return count;
}
time_complexity.cs
[class]{time_complexity}-[func]{FactorialRecur}
time_complexity.go
[class]{}-[func]{factorialRecur}
time_complexity.swift
[class]{}-[func]{factorialRecur}
time_complexity.js
[class]{}-[func]{factorialRecur}
time_complexity.ts
[class]{}-[func]{factorialRecur}
time_complexity.dart
[class]{}-[func]{factorialRecur}
time_complexity.rs
[class]{}-[func]{factorial_recur}
time_complexity.c
[class]{}-[func]{factorialRecur}
time_complexity.kt
[class]{}-[func]{factorialRecur}
time_complexity.rb
[class]{}-[func]{factorial_recur}
time_complexity.zig
[class]{}-[func]{factorialRecur}

Factorial order time complexity

Figure 2-14   Factorial order time complexity

Note that factorial order grows even faster than exponential order; it's unacceptable for larger \(n\) values.

2.3.5   Worst, best, and average time complexities

The time efficiency of an algorithm is often not fixed but depends on the distribution of the input data. Assume we have an array nums of length \(n\), consisting of numbers from \(1\) to \(n\), each appearing only once, but in a randomly shuffled order. The task is to return the index of the element \(1\). We can draw the following conclusions:

  • When nums = [?, ?, ..., 1], that is, when the last element is \(1\), it requires a complete traversal of the array, achieving the worst-case time complexity of \(O(n)\).
  • When nums = [1, ?, ?, ...], that is, when the first element is \(1\), no matter the length of the array, no further traversal is needed, achieving the best-case time complexity of \(\Omega(1)\).

The "worst-case time complexity" corresponds to the asymptotic upper bound, denoted by the big \(O\) notation. Correspondingly, the "best-case time complexity" corresponds to the asymptotic lower bound, denoted by \(\Omega\):

worst_best_time_complexity.py
def random_numbers(n: int) -> list[int]:
    """Generate an array with elements: 1, 2, ..., n, order shuffled"""
    # Generate array nums =: 1, 2, 3, ..., n
    nums = [i for i in range(1, n + 1)]
    # Randomly shuffle array elements
    random.shuffle(nums)
    return nums

def find_one(nums: list[int]) -> int:
    """Find the index of number 1 in array nums"""
    for i in range(len(nums)):
        # When element 1 is at the start of the array, achieve best time complexity O(1)
        # When element 1 is at the end of the array, achieve worst time complexity O(n)
        if nums[i] == 1:
            return i
    return -1
worst_best_time_complexity.cpp
/* Generate an array with elements {1, 2, ..., n} in a randomly shuffled order */
vector<int> randomNumbers(int n) {
    vector<int> nums(n);
    // Generate array nums = { 1, 2, 3, ..., n }
    for (int i = 0; i < n; i++) {
        nums[i] = i + 1;
    }
    // Generate a random seed using system time
    unsigned seed = chrono::system_clock::now().time_since_epoch().count();
    // Randomly shuffle array elements
    shuffle(nums.begin(), nums.end(), default_random_engine(seed));
    return nums;
}

/* Find the index of number 1 in array nums */
int findOne(vector<int> &nums) {
    for (int i = 0; i < nums.size(); i++) {
        // When element 1 is at the start of the array, achieve best time complexity O(1)
        // When element 1 is at the end of the array, achieve worst time complexity O(n)
        if (nums[i] == 1)
            return i;
    }
    return -1;
}
worst_best_time_complexity.java
/* Generate an array with elements {1, 2, ..., n} in a randomly shuffled order */
int[] randomNumbers(int n) {
    Integer[] nums = new Integer[n];
    // Generate array nums = { 1, 2, 3, ..., n }
    for (int i = 0; i < n; i++) {
        nums[i] = i + 1;
    }
    // Randomly shuffle array elements
    Collections.shuffle(Arrays.asList(nums));
    // Integer[] -> int[]
    int[] res = new int[n];
    for (int i = 0; i < n; i++) {
        res[i] = nums[i];
    }
    return res;
}

/* Find the index of number 1 in array nums */
int findOne(int[] nums) {
    for (int i = 0; i < nums.length; i++) {
        // When element 1 is at the start of the array, achieve best time complexity O(1)
        // When element 1 is at the end of the array, achieve worst time complexity O(n)
        if (nums[i] == 1)
            return i;
    }
    return -1;
}
worst_best_time_complexity.cs
[class]{worst_best_time_complexity}-[func]{RandomNumbers}

[class]{worst_best_time_complexity}-[func]{FindOne}
worst_best_time_complexity.go
[class]{}-[func]{randomNumbers}

[class]{}-[func]{findOne}
worst_best_time_complexity.swift
[class]{}-[func]{randomNumbers}

[class]{}-[func]{findOne}
worst_best_time_complexity.js
[class]{}-[func]{randomNumbers}

[class]{}-[func]{findOne}
worst_best_time_complexity.ts
[class]{}-[func]{randomNumbers}

[class]{}-[func]{findOne}
worst_best_time_complexity.dart
[class]{}-[func]{randomNumbers}

[class]{}-[func]{findOne}
worst_best_time_complexity.rs
[class]{}-[func]{random_numbers}

[class]{}-[func]{find_one}
worst_best_time_complexity.c
[class]{}-[func]{randomNumbers}

[class]{}-[func]{findOne}
worst_best_time_complexity.kt
[class]{}-[func]{randomNumbers}

[class]{}-[func]{findOne}
worst_best_time_complexity.rb
[class]{}-[func]{random_numbers}

[class]{}-[func]{find_one}
worst_best_time_complexity.zig
[class]{}-[func]{randomNumbers}

[class]{}-[func]{findOne}

It's important to note that the best-case time complexity is rarely used in practice, as it is usually only achievable under very low probabilities and might be misleading. The worst-case time complexity is more practical as it provides a safety value for efficiency, allowing us to confidently use the algorithm.

From the above example, it's clear that both the worst-case and best-case time complexities only occur under "special data distributions," which may have a small probability of occurrence and may not accurately reflect the algorithm's run efficiency. In contrast, the average time complexity can reflect the algorithm's efficiency under random input data, denoted by the \(\Theta\) notation.

For some algorithms, we can simply estimate the average case under a random data distribution. For example, in the aforementioned example, since the input array is shuffled, the probability of element \(1\) appearing at any index is equal. Therefore, the average number of loops for the algorithm is half the length of the array \(n / 2\), giving an average time complexity of \(\Theta(n / 2) = \Theta(n)\).

However, calculating the average time complexity for more complex algorithms can be quite difficult, as it's challenging to analyze the overall mathematical expectation under the data distribution. In such cases, we usually use the worst-case time complexity as the standard for judging the efficiency of the algorithm.

Why is the \(\Theta\) symbol rarely seen?

Possibly because the \(O\) notation is more commonly spoken, it is often used to represent the average time complexity. However, strictly speaking, this practice is not accurate. In this book and other materials, if you encounter statements like "average time complexity \(O(n)\)", please understand it directly as \(\Theta(n)\).

Feel free to drop your insights, questions or suggestions