Skip to content

13.4   N-Queens Problem

Question

According to the rules of chess, a queen can attack pieces that share the same row, column, or diagonal line. Given \(n\) queens and an \(n \times n\) chessboard, find a placement scheme such that no two queens can attack each other.

As shown in Figure 13-15, when \(n = 4\), there are two solutions that can be found. From the perspective of the backtracking algorithm, an \(n \times n\) chessboard has \(n^2\) squares, which provide all the choices choices. During the process of placing queens one by one, the chessboard state changes continuously, and the chessboard at each moment represents the state state.

Solution to the 4-queens problem

Figure 13-15   Solution to the 4-queens problem

Figure 13-16 illustrates the three constraints of this problem: multiple queens cannot be in the same row, the same column, or on the same diagonal. It is worth noting that diagonals are divided into two types: the main diagonal \ and the anti-diagonal /.

Constraints of the n-queens problem

Figure 13-16   Constraints of the n-queens problem

1.   Row-By-Row Placement Strategy

Since both the number of queens and the number of rows on the chessboard are \(n\), we can easily derive a conclusion: each row of the chessboard allows and only allows exactly one queen to be placed.

This means we can adopt a row-by-row placement strategy: starting from the first row, place one queen in each row until the last row is completed.

Figure 13-17 shows the row-by-row placement process for the 4-queens problem. Due to space limitations, the figure only expands one search branch of the first row, and all schemes that do not satisfy the column constraint and diagonal constraints are pruned.

Row-by-row placement strategy

Figure 13-17   Row-by-row placement strategy

Essentially, the row-by-row placement strategy serves a pruning function, as it avoids all search branches where multiple queens appear in the same row.

2.   Column and Diagonal Pruning

To satisfy the column constraint, we can use a boolean array cols of length \(n\) to record whether each column has a queen. Before each placement decision, we use cols to prune columns that already have queens, and dynamically update the state of cols during backtracking.

Tip

Please note that the origin of the matrix is located in the upper-left corner, where the row index increases from top to bottom, and the column index increases from left to right.

So how do we handle diagonal constraints? Consider a square on the chessboard with row and column indices \((row, col)\). If we select a specific main diagonal in the matrix, we find that all squares on that diagonal have the same difference between their row and column indices, meaning that \(row - col\) is a constant value for all squares on the main diagonal.

In other words, if two squares satisfy \(row_1 - col_1 = row_2 - col_2\), they must be on the same main diagonal. Using this pattern, we can use the array diags1 shown in Figure 13-18 to record whether there is a queen on each main diagonal.

Similarly, for all squares on an anti-diagonal, the sum \(row + col\) is a constant value. We can likewise use the array diags2 to handle anti-diagonal constraints.

Handling column and diagonal constraints

Figure 13-18   Handling column and diagonal constraints

3.   Code Implementation

Please note that in an \(n\)-dimensional square matrix, the range of \(row - col\) is \([-n + 1, n - 1]\), and the range of \(row + col\) is \([0, 2n - 2]\). Therefore, the number of both main diagonals and anti-diagonals is \(2n - 1\), meaning the length of both arrays diags1 and diags2 is \(2n - 1\).

n_queens.py
def backtrack(
    row: int,
    n: int,
    state: list[list[str]],
    res: list[list[list[str]]],
    cols: list[bool],
    diags1: list[bool],
    diags2: list[bool],
):
    """Backtracking algorithm: N queens"""
    # When all rows are placed, record the solution
    if row == n:
        res.append([list(row) for row in state])
        return
    # Traverse all columns
    for col in range(n):
        # Calculate the main diagonal and anti-diagonal corresponding to this cell
        diag1 = row - col + n - 1
        diag2 = row + col
        # Pruning: do not allow queens to exist in the column, main diagonal, and anti-diagonal of this cell
        if not cols[col] and not diags1[diag1] and not diags2[diag2]:
            # Attempt: place the queen in this cell
            state[row][col] = "Q"
            cols[col] = diags1[diag1] = diags2[diag2] = True
            # Place the next row
            backtrack(row + 1, n, state, res, cols, diags1, diags2)
            # Backtrack: restore this cell to an empty cell
            state[row][col] = "#"
            cols[col] = diags1[diag1] = diags2[diag2] = False

def n_queens(n: int) -> list[list[list[str]]]:
    """Solve N queens"""
    # Initialize an n*n chessboard, where 'Q' represents a queen and '#' represents an empty cell
    state = [["#" for _ in range(n)] for _ in range(n)]
    cols = [False] * n  # Record whether there is a queen in the column
    diags1 = [False] * (2 * n - 1)  # Record whether there is a queen on the main diagonal
    diags2 = [False] * (2 * n - 1)  # Record whether there is a queen on the anti-diagonal
    res = []
    backtrack(0, n, state, res, cols, diags1, diags2)

    return res
n_queens.cpp
/* Backtracking algorithm: N queens */
void backtrack(int row, int n, vector<vector<string>> &state, vector<vector<vector<string>>> &res, vector<bool> &cols,
               vector<bool> &diags1, vector<bool> &diags2) {
    // When all rows are placed, record the solution
    if (row == n) {
        res.push_back(state);
        return;
    }
    // Traverse all columns
    for (int col = 0; col < n; col++) {
        // Calculate the main diagonal and anti-diagonal corresponding to this cell
        int diag1 = row - col + n - 1;
        int diag2 = row + col;
        // Pruning: do not allow queens to exist in the column, main diagonal, and anti-diagonal of this cell
        if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {
            // Attempt: place the queen in this cell
            state[row][col] = "Q";
            cols[col] = diags1[diag1] = diags2[diag2] = true;
            // Place the next row
            backtrack(row + 1, n, state, res, cols, diags1, diags2);
            // Backtrack: restore this cell to an empty cell
            state[row][col] = "#";
            cols[col] = diags1[diag1] = diags2[diag2] = false;
        }
    }
}

/* Solve N queens */
vector<vector<vector<string>>> nQueens(int n) {
    // Initialize an n*n chessboard, where 'Q' represents a queen and '#' represents an empty cell
    vector<vector<string>> state(n, vector<string>(n, "#"));
    vector<bool> cols(n, false);           // Record whether there is a queen in the column
    vector<bool> diags1(2 * n - 1, false); // Record whether there is a queen on the main diagonal
    vector<bool> diags2(2 * n - 1, false); // Record whether there is a queen on the anti-diagonal
    vector<vector<vector<string>>> res;

    backtrack(0, n, state, res, cols, diags1, diags2);

    return res;
}
n_queens.java
/* Backtracking algorithm: N queens */
void backtrack(int row, int n, List<List<String>> state, List<List<List<String>>> res,
        boolean[] cols, boolean[] diags1, boolean[] diags2) {
    // When all rows are placed, record the solution
    if (row == n) {
        List<List<String>> copyState = new ArrayList<>();
        for (List<String> sRow : state) {
            copyState.add(new ArrayList<>(sRow));
        }
        res.add(copyState);
        return;
    }
    // Traverse all columns
    for (int col = 0; col < n; col++) {
        // Calculate the main diagonal and anti-diagonal corresponding to this cell
        int diag1 = row - col + n - 1;
        int diag2 = row + col;
        // Pruning: do not allow queens to exist in the column, main diagonal, and anti-diagonal of this cell
        if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {
            // Attempt: place the queen in this cell
            state.get(row).set(col, "Q");
            cols[col] = diags1[diag1] = diags2[diag2] = true;
            // Place the next row
            backtrack(row + 1, n, state, res, cols, diags1, diags2);
            // Backtrack: restore this cell to an empty cell
            state.get(row).set(col, "#");
            cols[col] = diags1[diag1] = diags2[diag2] = false;
        }
    }
}

/* Solve N queens */
List<List<List<String>>> nQueens(int n) {
    // Initialize an n*n chessboard, where 'Q' represents a queen and '#' represents an empty cell
    List<List<String>> state = new ArrayList<>();
    for (int i = 0; i < n; i++) {
        List<String> row = new ArrayList<>();
        for (int j = 0; j < n; j++) {
            row.add("#");
        }
        state.add(row);
    }
    boolean[] cols = new boolean[n]; // Record whether there is a queen in the column
    boolean[] diags1 = new boolean[2 * n - 1]; // Record whether there is a queen on the main diagonal
    boolean[] diags2 = new boolean[2 * n - 1]; // Record whether there is a queen on the anti-diagonal
    List<List<List<String>>> res = new ArrayList<>();

    backtrack(0, n, state, res, cols, diags1, diags2);

    return res;
}
n_queens.cs
/* Backtracking algorithm: N queens */
void Backtrack(int row, int n, List<List<string>> state, List<List<List<string>>> res,
        bool[] cols, bool[] diags1, bool[] diags2) {
    // When all rows are placed, record the solution
    if (row == n) {
        List<List<string>> copyState = [];
        foreach (List<string> sRow in state) {
            copyState.Add(new List<string>(sRow));
        }
        res.Add(copyState);
        return;
    }
    // Traverse all columns
    for (int col = 0; col < n; col++) {
        // Calculate the main diagonal and anti-diagonal corresponding to this cell
        int diag1 = row - col + n - 1;
        int diag2 = row + col;
        // Pruning: do not allow queens to exist in the column, main diagonal, and anti-diagonal of this cell
        if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {
            // Attempt: place the queen in this cell
            state[row][col] = "Q";
            cols[col] = diags1[diag1] = diags2[diag2] = true;
            // Place the next row
            Backtrack(row + 1, n, state, res, cols, diags1, diags2);
            // Backtrack: restore this cell to an empty cell
            state[row][col] = "#";
            cols[col] = diags1[diag1] = diags2[diag2] = false;
        }
    }
}

/* Solve N queens */
List<List<List<string>>> NQueens(int n) {
    // Initialize an n*n chessboard, where 'Q' represents a queen and '#' represents an empty cell
    List<List<string>> state = [];
    for (int i = 0; i < n; i++) {
        List<string> row = [];
        for (int j = 0; j < n; j++) {
            row.Add("#");
        }
        state.Add(row);
    }
    bool[] cols = new bool[n]; // Record whether there is a queen in the column
    bool[] diags1 = new bool[2 * n - 1]; // Record whether there is a queen on the main diagonal
    bool[] diags2 = new bool[2 * n - 1]; // Record whether there is a queen on the anti-diagonal
    List<List<List<string>>> res = [];

    Backtrack(0, n, state, res, cols, diags1, diags2);

    return res;
}
n_queens.go
/* Backtracking algorithm: N queens */
func backtrack(row, n int, state *[][]string, res *[][][]string, cols, diags1, diags2 *[]bool) {
    // When all rows are placed, record the solution
    if row == n {
        newState := make([][]string, len(*state))
        for i, _ := range newState {
            newState[i] = make([]string, len((*state)[0]))
            copy(newState[i], (*state)[i])

        }
        *res = append(*res, newState)
        return
    }
    // Traverse all columns
    for col := 0; col < n; col++ {
        // Calculate the main diagonal and anti-diagonal corresponding to this cell
        diag1 := row - col + n - 1
        diag2 := row + col
        // Pruning: do not allow queens to exist in the column, main diagonal, and anti-diagonal of this cell
        if !(*cols)[col] && !(*diags1)[diag1] && !(*diags2)[diag2] {
            // Attempt: place the queen in this cell
            (*state)[row][col] = "Q"
            (*cols)[col], (*diags1)[diag1], (*diags2)[diag2] = true, true, true
            // Place the next row
            backtrack(row+1, n, state, res, cols, diags1, diags2)
            // Backtrack: restore this cell to an empty cell
            (*state)[row][col] = "#"
            (*cols)[col], (*diags1)[diag1], (*diags2)[diag2] = false, false, false
        }
    }
}

/* Solve N queens */
func nQueens(n int) [][][]string {
    // Initialize an n*n chessboard, where 'Q' represents a queen and '#' represents an empty cell
    state := make([][]string, n)
    for i := 0; i < n; i++ {
        row := make([]string, n)
        for i := 0; i < n; i++ {
            row[i] = "#"
        }
        state[i] = row
    }
    // Record whether there is a queen in the column
    cols := make([]bool, n)
    diags1 := make([]bool, 2*n-1)
    diags2 := make([]bool, 2*n-1)
    res := make([][][]string, 0)
    backtrack(0, n, &state, &res, &cols, &diags1, &diags2)
    return res
}
n_queens.swift
/* Backtracking algorithm: N queens */
func backtrack(row: Int, n: Int, state: inout [[String]], res: inout [[[String]]], cols: inout [Bool], diags1: inout [Bool], diags2: inout [Bool]) {
    // When all rows are placed, record the solution
    if row == n {
        res.append(state)
        return
    }
    // Traverse all columns
    for col in 0 ..< n {
        // Calculate the main diagonal and anti-diagonal corresponding to this cell
        let diag1 = row - col + n - 1
        let diag2 = row + col
        // Pruning: do not allow queens to exist in the column, main diagonal, and anti-diagonal of this cell
        if !cols[col] && !diags1[diag1] && !diags2[diag2] {
            // Attempt: place the queen in this cell
            state[row][col] = "Q"
            cols[col] = true
            diags1[diag1] = true
            diags2[diag2] = true
            // Place the next row
            backtrack(row: row + 1, n: n, state: &state, res: &res, cols: &cols, diags1: &diags1, diags2: &diags2)
            // Backtrack: restore this cell to an empty cell
            state[row][col] = "#"
            cols[col] = false
            diags1[diag1] = false
            diags2[diag2] = false
        }
    }
}

/* Solve N queens */
func nQueens(n: Int) -> [[[String]]] {
    // Initialize an n*n chessboard, where 'Q' represents a queen and '#' represents an empty cell
    var state = Array(repeating: Array(repeating: "#", count: n), count: n)
    var cols = Array(repeating: false, count: n) // Record whether there is a queen in the column
    var diags1 = Array(repeating: false, count: 2 * n - 1) // Record whether there is a queen on the main diagonal
    var diags2 = Array(repeating: false, count: 2 * n - 1) // Record whether there is a queen on the anti-diagonal
    var res: [[[String]]] = []

    backtrack(row: 0, n: n, state: &state, res: &res, cols: &cols, diags1: &diags1, diags2: &diags2)

    return res
}
n_queens.js
/* Backtracking algorithm: N queens */
function backtrack(row, n, state, res, cols, diags1, diags2) {
    // When all rows are placed, record the solution
    if (row === n) {
        res.push(state.map((row) => row.slice()));
        return;
    }
    // Traverse all columns
    for (let col = 0; col < n; col++) {
        // Calculate the main diagonal and anti-diagonal corresponding to this cell
        const diag1 = row - col + n - 1;
        const diag2 = row + col;
        // Pruning: do not allow queens to exist in the column, main diagonal, and anti-diagonal of this cell
        if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {
            // Attempt: place the queen in this cell
            state[row][col] = 'Q';
            cols[col] = diags1[diag1] = diags2[diag2] = true;
            // Place the next row
            backtrack(row + 1, n, state, res, cols, diags1, diags2);
            // Backtrack: restore this cell to an empty cell
            state[row][col] = '#';
            cols[col] = diags1[diag1] = diags2[diag2] = false;
        }
    }
}

/* Solve N queens */
function nQueens(n) {
    // Initialize an n*n chessboard, where 'Q' represents a queen and '#' represents an empty cell
    const state = Array.from({ length: n }, () => Array(n).fill('#'));
    const cols = Array(n).fill(false); // Record whether there is a queen in the column
    const diags1 = Array(2 * n - 1).fill(false); // Record whether there is a queen on the main diagonal
    const diags2 = Array(2 * n - 1).fill(false); // Record whether there is a queen on the anti-diagonal
    const res = [];

    backtrack(0, n, state, res, cols, diags1, diags2);
    return res;
}
n_queens.ts
/* Backtracking algorithm: N queens */
function backtrack(
    row: number,
    n: number,
    state: string[][],
    res: string[][][],
    cols: boolean[],
    diags1: boolean[],
    diags2: boolean[]
): void {
    // When all rows are placed, record the solution
    if (row === n) {
        res.push(state.map((row) => row.slice()));
        return;
    }
    // Traverse all columns
    for (let col = 0; col < n; col++) {
        // Calculate the main diagonal and anti-diagonal corresponding to this cell
        const diag1 = row - col + n - 1;
        const diag2 = row + col;
        // Pruning: do not allow queens to exist in the column, main diagonal, and anti-diagonal of this cell
        if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {
            // Attempt: place the queen in this cell
            state[row][col] = 'Q';
            cols[col] = diags1[diag1] = diags2[diag2] = true;
            // Place the next row
            backtrack(row + 1, n, state, res, cols, diags1, diags2);
            // Backtrack: restore this cell to an empty cell
            state[row][col] = '#';
            cols[col] = diags1[diag1] = diags2[diag2] = false;
        }
    }
}

/* Solve N queens */
function nQueens(n: number): string[][][] {
    // Initialize an n*n chessboard, where 'Q' represents a queen and '#' represents an empty cell
    const state = Array.from({ length: n }, () => Array(n).fill('#'));
    const cols = Array(n).fill(false); // Record whether there is a queen in the column
    const diags1 = Array(2 * n - 1).fill(false); // Record whether there is a queen on the main diagonal
    const diags2 = Array(2 * n - 1).fill(false); // Record whether there is a queen on the anti-diagonal
    const res: string[][][] = [];

    backtrack(0, n, state, res, cols, diags1, diags2);
    return res;
}
n_queens.dart
/* Backtracking algorithm: N queens */
void backtrack(
  int row,
  int n,
  List<List<String>> state,
  List<List<List<String>>> res,
  List<bool> cols,
  List<bool> diags1,
  List<bool> diags2,
) {
  // When all rows are placed, record the solution
  if (row == n) {
    List<List<String>> copyState = [];
    for (List<String> sRow in state) {
      copyState.add(List.from(sRow));
    }
    res.add(copyState);
    return;
  }
  // Traverse all columns
  for (int col = 0; col < n; col++) {
    // Calculate the main diagonal and anti-diagonal corresponding to this cell
    int diag1 = row - col + n - 1;
    int diag2 = row + col;
    // Pruning: do not allow queens to exist in the column, main diagonal, and anti-diagonal of this cell
    if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {
      // Attempt: place the queen in this cell
      state[row][col] = "Q";
      cols[col] = true;
      diags1[diag1] = true;
      diags2[diag2] = true;
      // Place the next row
      backtrack(row + 1, n, state, res, cols, diags1, diags2);
      // Backtrack: restore this cell to an empty cell
      state[row][col] = "#";
      cols[col] = false;
      diags1[diag1] = false;
      diags2[diag2] = false;
    }
  }
}

/* Solve N queens */
List<List<List<String>>> nQueens(int n) {
  // Initialize an n*n chessboard, where 'Q' represents a queen and '#' represents an empty cell
  List<List<String>> state = List.generate(n, (index) => List.filled(n, "#"));
  List<bool> cols = List.filled(n, false); // Record whether there is a queen in the column
  List<bool> diags1 = List.filled(2 * n - 1, false); // Record whether there is a queen on the main diagonal
  List<bool> diags2 = List.filled(2 * n - 1, false); // Record whether there is a queen on the anti-diagonal
  List<List<List<String>>> res = [];

  backtrack(0, n, state, res, cols, diags1, diags2);

  return res;
}
n_queens.rs
/* Backtracking algorithm: N queens */
fn backtrack(
    row: usize,
    n: usize,
    state: &mut Vec<Vec<String>>,
    res: &mut Vec<Vec<Vec<String>>>,
    cols: &mut [bool],
    diags1: &mut [bool],
    diags2: &mut [bool],
) {
    // When all rows are placed, record the solution
    if row == n {
        res.push(state.clone());
        return;
    }
    // Traverse all columns
    for col in 0..n {
        // Calculate the main diagonal and anti-diagonal corresponding to this cell
        let diag1 = row + n - 1 - col;
        let diag2 = row + col;
        // Pruning: do not allow queens to exist in the column, main diagonal, and anti-diagonal of this cell
        if !cols[col] && !diags1[diag1] && !diags2[diag2] {
            // Attempt: place the queen in this cell
            state[row][col] = "Q".into();
            (cols[col], diags1[diag1], diags2[diag2]) = (true, true, true);
            // Place the next row
            backtrack(row + 1, n, state, res, cols, diags1, diags2);
            // Backtrack: restore this cell to an empty cell
            state[row][col] = "#".into();
            (cols[col], diags1[diag1], diags2[diag2]) = (false, false, false);
        }
    }
}

/* Solve N queens */
fn n_queens(n: usize) -> Vec<Vec<Vec<String>>> {
    // Initialize an n*n chessboard, where 'Q' represents a queen and '#' represents an empty cell
    let mut state: Vec<Vec<String>> = vec![vec!["#".to_string(); n]; n];
    let mut cols = vec![false; n]; // Record whether there is a queen in the column
    let mut diags1 = vec![false; 2 * n - 1]; // Record whether there is a queen on the main diagonal
    let mut diags2 = vec![false; 2 * n - 1]; // Record whether there is a queen on the anti-diagonal
    let mut res: Vec<Vec<Vec<String>>> = Vec::new();

    backtrack(
        0,
        n,
        &mut state,
        &mut res,
        &mut cols,
        &mut diags1,
        &mut diags2,
    );

    res
}
n_queens.c
/* Backtracking algorithm: N queens */
void backtrack(int row, int n, char state[MAX_SIZE][MAX_SIZE], char ***res, int *resSize, bool cols[MAX_SIZE],
               bool diags1[2 * MAX_SIZE - 1], bool diags2[2 * MAX_SIZE - 1]) {
    // When all rows are placed, record the solution
    if (row == n) {
        res[*resSize] = (char **)malloc(sizeof(char *) * n);
        for (int i = 0; i < n; ++i) {
            res[*resSize][i] = (char *)malloc(sizeof(char) * (n + 1));
            strcpy(res[*resSize][i], state[i]);
        }
        (*resSize)++;
        return;
    }
    // Traverse all columns
    for (int col = 0; col < n; col++) {
        // Calculate the main diagonal and anti-diagonal corresponding to this cell
        int diag1 = row - col + n - 1;
        int diag2 = row + col;
        // Pruning: do not allow queens to exist in the column, main diagonal, and anti-diagonal of this cell
        if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {
            // Attempt: place the queen in this cell
            state[row][col] = 'Q';
            cols[col] = diags1[diag1] = diags2[diag2] = true;
            // Place the next row
            backtrack(row + 1, n, state, res, resSize, cols, diags1, diags2);
            // Backtrack: restore this cell to an empty cell
            state[row][col] = '#';
            cols[col] = diags1[diag1] = diags2[diag2] = false;
        }
    }
}

/* Solve N queens */
char ***nQueens(int n, int *returnSize) {
    char state[MAX_SIZE][MAX_SIZE];
    // Initialize an n*n chessboard, where 'Q' represents a queen and '#' represents an empty cell
    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < n; ++j) {
            state[i][j] = '#';
        }
        state[i][n] = '\0';
    }
    bool cols[MAX_SIZE] = {false};           // Record whether there is a queen in the column
    bool diags1[2 * MAX_SIZE - 1] = {false}; // Record whether there is a queen on the main diagonal
    bool diags2[2 * MAX_SIZE - 1] = {false}; // Record whether there is a queen on the anti-diagonal

    char ***res = (char ***)malloc(sizeof(char **) * MAX_SIZE);
    *returnSize = 0;
    backtrack(0, n, state, res, returnSize, cols, diags1, diags2);
    return res;
}
n_queens.kt
/* Backtracking algorithm: N queens */
fun backtrack(
    row: Int,
    n: Int,
    state: MutableList<MutableList<String>>,
    res: MutableList<MutableList<MutableList<String>>?>,
    cols: BooleanArray,
    diags1: BooleanArray,
    diags2: BooleanArray
) {
    // When all rows are placed, record the solution
    if (row == n) {
        val copyState = mutableListOf<MutableList<String>>()
        for (sRow in state) {
            copyState.add(sRow.toMutableList())
        }
        res.add(copyState)
        return
    }
    // Traverse all columns
    for (col in 0..<n) {
        // Calculate the main diagonal and anti-diagonal corresponding to this cell
        val diag1 = row - col + n - 1
        val diag2 = row + col
        // Pruning: do not allow queens to exist in the column, main diagonal, and anti-diagonal of this cell
        if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {
            // Attempt: place the queen in this cell
            state[row][col] = "Q"
            diags2[diag2] = true
            diags1[diag1] = diags2[diag2]
            cols[col] = diags1[diag1]
            // Place the next row
            backtrack(row + 1, n, state, res, cols, diags1, diags2)
            // Backtrack: restore this cell to an empty cell
            state[row][col] = "#"
            diags2[diag2] = false
            diags1[diag1] = diags2[diag2]
            cols[col] = diags1[diag1]
        }
    }
}

/* Solve N queens */
fun nQueens(n: Int): MutableList<MutableList<MutableList<String>>?> {
    // Initialize an n*n chessboard, where 'Q' represents a queen and '#' represents an empty cell
    val state = mutableListOf<MutableList<String>>()
    for (i in 0..<n) {
        val row = mutableListOf<String>()
        for (j in 0..<n) {
            row.add("#")
        }
        state.add(row)
    }
    val cols = BooleanArray(n) // Record whether there is a queen in the column
    val diags1 = BooleanArray(2 * n - 1) // Record whether there is a queen on the main diagonal
    val diags2 = BooleanArray(2 * n - 1) // Record whether there is a queen on the anti-diagonal
    val res = mutableListOf<MutableList<MutableList<String>>?>()

    backtrack(0, n, state, res, cols, diags1, diags2)

    return res
}
n_queens.rb
### Backtracking: n queens ###
def backtrack(row, n, state, res, cols, diags1, diags2)
  # When all rows are placed, record the solution
  if row == n
    res << state.map { |row| row.dup }
    return
  end

  # Traverse all columns
  for col in 0...n
    # Calculate the main diagonal and anti-diagonal corresponding to this cell
    diag1 = row - col + n - 1
    diag2 = row + col
    # Pruning: do not allow queens to exist in the column, main diagonal, and anti-diagonal of this cell
    if !cols[col] && !diags1[diag1] && !diags2[diag2]
      # Attempt: place the queen in this cell
      state[row][col] = "Q"
      cols[col] = diags1[diag1] = diags2[diag2] = true
      # Place the next row
      backtrack(row + 1, n, state, res, cols, diags1, diags2)
      # Backtrack: restore this cell to an empty cell
      state[row][col] = "#"
      cols[col] = diags1[diag1] = diags2[diag2] = false
    end
  end
end

### Solve n queens ###
def n_queens(n)
  # Initialize an n*n chessboard, where 'Q' represents a queen and '#' represents an empty cell
  state = Array.new(n) { Array.new(n, "#") }
  cols = Array.new(n, false) # Record whether there is a queen in the column
  diags1 = Array.new(2 * n - 1, false) # Record whether there is a queen on the main diagonal
  diags2 = Array.new(2 * n - 1, false) # Record whether there is a queen on the anti-diagonal
  res = []
  backtrack(0, n, state, res, cols, diags1, diags2)

  res
end

Placing \(n\) queens row by row, considering the column constraint, from the first row to the last row there are \(n\), \(n-1\), \(\dots\), \(2\), \(1\) choices, using \(O(n!)\) time. When recording a solution, it is necessary to copy the matrix state and add it to res, and the copy operation uses \(O(n^2)\) time. Therefore, the overall time complexity is \(O(n! \cdot n^2)\). In practice, pruning based on diagonal constraints can also significantly reduce the search space, so the search efficiency is often better than the time complexity mentioned above.

The array state uses \(O(n^2)\) space, and the arrays cols, diags1, and diags2 each use \(O(n)\) space. The maximum recursion depth is \(n\), using \(O(n)\) stack frame space. Therefore, the space complexity is \(O(n^2)\).

Feel free to drop your insights, questions or suggestions