Skip to content

4.3   List

A list is an abstract data structure concept that represents an ordered collection of elements, supporting operations such as element access, modification, addition, deletion, and traversal, without requiring users to consider capacity limitations. Lists can be implemented based on linked lists or arrays.

  • A linked list inherently serves as a list, supporting operations for adding, deleting, searching, and modifying elements, with the flexibility to dynamically adjust its size.
  • Arrays also support these operations, but due to their immutable length, they can be considered as a list with a length limit.

When implementing lists using arrays, the immutability of length reduces the practicality of the list. This is because predicting the amount of data to be stored in advance is often challenging, making it difficult to choose an appropriate list length. If the length is too small, it may not meet the requirements; if too large, it may waste memory space.

To solve this problem, we can implement lists using a dynamic array. It inherits the advantages of arrays and can dynamically expand during program execution.

In fact, many programming languages' standard libraries implement lists using dynamic arrays, such as Python's list, Java's ArrayList, C++'s vector, and C#'s List. In the following discussion, we will consider "list" and "dynamic array" as synonymous concepts.

4.3.1   Common list operations

1.   Initializing a list

We typically use two initialization methods: "without initial values" and "with initial values".

list.py
# Initialize list
# Without initial values
nums1: list[int] = []
# With initial values
nums: list[int] = [1, 3, 2, 5, 4]
list.cpp
/* Initialize list */
// Note, in C++ the vector is the equivalent of nums described here
// Without initial values
vector<int> nums1;
// With initial values
vector<int> nums = { 1, 3, 2, 5, 4 };
list.java
/* Initialize list */
// Without initial values
List<Integer> nums1 = new ArrayList<>();
// With initial values (note the element type should be the wrapper class Integer[] for int[])
Integer[] numbers = new Integer[] { 1, 3, 2, 5, 4 };
List<Integer> nums = new ArrayList<>(Arrays.asList(numbers));
list.cs
/* Initialize list */
// Without initial values
List<int> nums1 = [];
// With initial values
int[] numbers = [1, 3, 2, 5, 4];
List<int> nums = [.. numbers];
list_test.go
/* Initialize list */
// Without initial values
nums1 := []int{}
// With initial values
nums := []int{1, 3, 2, 5, 4}
list.swift
/* Initialize list */
// Without initial values
let nums1: [Int] = []
// With initial values
var nums = [1, 3, 2, 5, 4]
list.js
/* Initialize list */
// Without initial values
const nums1 = [];
// With initial values
const nums = [1, 3, 2, 5, 4];
list.ts
/* Initialize list */
// Without initial values
const nums1: number[] = [];
// With initial values
const nums: number[] = [1, 3, 2, 5, 4];
list.dart
/* Initialize list */
// Without initial values
List<int> nums1 = [];
// With initial values
List<int> nums = [1, 3, 2, 5, 4];
list.rs
/* Initialize list */
// Without initial values
let nums1: Vec<i32> = Vec::new();
// With initial values
let nums: Vec<i32> = vec![1, 3, 2, 5, 4];
list.c
// C does not provide built-in dynamic arrays
list.kt

list.zig
// Initialize list
var nums = std.ArrayList(i32).init(std.heap.page_allocator);
defer nums.deinit();
try nums.appendSlice(&[_]i32{ 1, 3, 2, 5, 4 });

2.   Accessing elements

Lists are essentially arrays, thus they can access and update elements in \(O(1)\) time, which is very efficient.

list.py
# Access elements
num: int = nums[1]  # Access the element at index 1

# Update elements
nums[1] = 0    # Update the element at index 1 to 0
list.cpp
/* Access elements */
int num = nums[1];  // Access the element at index 1

/* Update elements */
nums[1] = 0;  // Update the element at index 1 to 0
list.java
/* Access elements */
int num = nums.get(1);  // Access the element at index 1

/* Update elements */
nums.set(1, 0);  // Update the element at index 1 to 0
list.cs
/* Access elements */
int num = nums[1];  // Access the element at index 1

/* Update elements */
nums[1] = 0;  // Update the element at index 1 to 0
list_test.go
/* Access elements */
num := nums[1]  // Access the element at index 1

/* Update elements */
nums[1] = 0     // Update the element at index 1 to 0
list.swift
/* Access elements */
let num = nums[1] // Access the element at index 1

/* Update elements */
nums[1] = 0 // Update the element at index 1 to 0
list.js
/* Access elements */
const num = nums[1];  // Access the element at index 1

/* Update elements */
nums[1] = 0;  // Update the element at index 1 to 0
list.ts
/* Access elements */
const num: number = nums[1];  // Access the element at index 1

/* Update elements */
nums[1] = 0;  // Update the element at index 1 to 0
list.dart
/* Access elements */
int num = nums[1];  // Access the element at index 1

/* Update elements */
nums[1] = 0;  // Update the element at index 1 to 0
list.rs
/* Access elements */
let num: i32 = nums[1];  // Access the element at index 1
/* Update elements */
nums[1] = 0;             // Update the element at index 1 to 0
list.c
// C does not provide built-in dynamic arrays
list.kt

list.zig
// Access elements
var num = nums.items[1]; // Access the element at index 1

// Update elements
nums.items[1] = 0; // Update the element at index 1 to 0  

3.   Inserting and removing elements

Compared to arrays, lists offer more flexibility in adding and removing elements. While adding elements to the end of a list is an \(O(1)\) operation, the efficiency of inserting and removing elements elsewhere in the list remains the same as in arrays, with a time complexity of \(O(n)\).

list.py
# Clear list
nums.clear()

# Append elements at the end
nums.append(1)
nums.append(3)
nums.append(2)
nums.append(5)
nums.append(4)

# Insert element in the middle
nums.insert(3, 6)  # Insert number 6 at index 3

# Remove elements
nums.pop(3)        # Remove the element at index 3
list.cpp
/* Clear list */
nums.clear();

/* Append elements at the end */
nums.push_back(1);
nums.push_back(3);
nums.push_back(2);
nums.push_back(5);
nums.push_back(4);

/* Insert element in the middle */
nums.insert(nums.begin() + 3, 6);  // Insert number 6 at index 3

/* Remove elements */
nums.erase(nums.begin() + 3);      // Remove the element at index 3
list.java
/* Clear list */
nums.clear();

/* Append elements at the end */
nums.add(1);
nums.add(3);
nums.add(2);
nums.add(5);
nums.add(4);

/* Insert element in the middle */
nums.add(3, 6);  // Insert number 6 at index 3

/* Remove elements */
nums.remove(3);  // Remove the element at index 3
list.cs
/* Clear list */
nums.Clear();

/* Append elements at the end */
nums.Add(1);
nums.Add(3);
nums.Add(2);
nums.Add(5);
nums.Add(4);

/* Insert element in the middle */
nums.Insert(3, 6);

/* Remove elements */
nums.RemoveAt(3);
list_test.go
/* Clear list */
nums = nil

/* Append elements at the end */
nums = append(nums, 1)
nums = append(nums, 3)
nums = append(nums, 2)
nums = append(nums, 5)
nums = append(nums, 4)

/* Insert element in the middle */
nums = append(nums[:3], append([]int{6}, nums[3:]...)...) // Insert number 6 at index 3

/* Remove elements */
nums = append(nums[:3], nums[4:]...) // Remove the element at index 3
list.swift
/* Clear list */
nums.removeAll()

/* Append elements at the end */
nums.append(1)
nums.append(3)
nums.append(2)
nums.append(5)
nums.append(4)

/* Insert element in the middle */
nums.insert(6, at: 3) // Insert number 6 at index 3

/* Remove elements */
nums.remove(at: 3) // Remove the element at index 3
list.js
/* Clear list */
nums.length = 0;

/* Append elements at the end */
nums.push(1);
nums.push(3);
nums.push(2);
nums.push(5);
nums.push(4);

/* Insert element in the middle */
nums.splice(3, 0, 6);

/* Remove elements */
nums.splice(3, 1);
list.ts
/* Clear list */
nums.length = 0;

/* Append elements at the end */
nums.push(1);
nums.push(3);
nums.push(2);
nums.push(5);
nums.push(4);

/* Insert element in the middle */
nums.splice(3, 0, 6);

/* Remove elements */
nums.splice(3, 1);
list.dart
/* Clear list */
nums.clear();

/* Append elements at the end */
nums.add(1);
nums.add(3);
nums.add(2);
nums.add(5);
nums.add(4);

/* Insert element in the middle */
nums.insert(3, 6); // Insert number 6 at index 3

/* Remove elements */
nums.removeAt(3); // Remove the element at index 3
list.rs
/* Clear list */
nums.clear();

/* Append elements at the end */
nums.push(1);
nums.push(3);
nums.push(2);
nums.push(5);
nums.push(4);

/* Insert element in the middle */
nums.insert(3, 6);  // Insert number 6 at index 3

/* Remove elements */
nums.remove(3);    // Remove the element at index 3
list.c
// C does not provide built-in dynamic arrays
list.kt

list.zig
// Clear list
nums.clearRetainingCapacity();

// Append elements at the end
try nums.append(1);
try nums.append(3);
try nums.append(2);
try nums.append(5);
try nums.append(4);

// Insert element in the middle
try nums.insert(3, 6); // Insert number 6 at index 3

// Remove elements
_ = nums.orderedRemove(3); // Remove the element at index 3

4.   Iterating the list

Similar to arrays, lists can be iterated either by using indices or by directly iterating through each element.

list.py
# Iterate through the list by index
count = 0
for i in range(len(nums)):
    count += nums[i]

# Iterate directly through list elements
for num in nums:
    count += num
list.cpp
/* Iterate through the list by index */
int count = 0;
for (int i = 0; i < nums.size(); i++) {
    count += nums[i];
}

/* Iterate directly through list elements */
count = 0;
for (int num : nums) {
    count += num;
}
list.java
/* Iterate through the list by index */
int count = 0;
for (int i = 0; i < nums.size(); i++) {
    count += nums.get(i);
}

/* Iterate directly through list elements */
for (int num : nums) {
    count += num;
}
list.cs
/* Iterate through the list by index */
int count = 0;
for (int i = 0; i < nums.Count; i++) {
    count += nums[i];
}

/* Iterate directly through list elements */
count = 0;
foreach (int num in nums) {
    count += num;
}
list_test.go
/* Iterate through the list by index */
count := 0
for i := 0; i < len(nums); i++ {
    count += nums[i]
}

/* Iterate directly through list elements */
count = 0
for _, num := range nums {
    count += num
}
list.swift
/* Iterate through the list by index */
var count = 0
for i in nums.indices {
    count += nums[i]
}

/* Iterate directly through list elements */
count = 0
for num in nums {
    count += num
}
list.js
/* Iterate through the list by index */
let count = 0;
for (let i = 0; i < nums.length; i++) {
    count += nums[i];
}

/* Iterate directly through list elements */
count = 0;
for (const num of nums) {
    count += num;
}
list.ts
/* Iterate through the list by index */
let count = 0;
for (let i = 0; i < nums.length; i++) {
    count += nums[i];
}

/* Iterate directly through list elements */
count = 0;
for (const num of nums) {
    count += num;
}
list.dart
/* Iterate through the list by index */
int count = 0;
for (var i = 0; i < nums.length; i++) {
    count += nums[i];
}

/* Iterate directly through list elements */
count = 0;
for (var num in nums) {
    count += num;
}
list.rs
// Iterate through the list by index
let mut _count = 0;
for i in 0..nums.len() {
    _count += nums[i];
}

// Iterate directly through list elements
_count = 0;
for num in &nums {
    _count += num;
}
list.c
// C does not provide built-in dynamic arrays
list.kt

list.zig
// Iterate through the list by index
var count: i32 = 0;
var i: i32 = 0;
while (i < nums.items.len) : (i += 1) {
    count += nums[i];
}

// Iterate directly through list elements
count = 0;
for (nums.items) |num| {
    count += num;
}

5.   Concatenating lists

Given a new list nums1, we can append it to the end of the original list.

list.py
# Concatenate two lists
nums1: list[int] = [6, 8, 7, 10, 9]
nums += nums1  # Concatenate nums1 to the end of nums
list.cpp
/* Concatenate two lists */
vector<int> nums1 = { 6, 8, 7, 10, 9 };
// Concatenate nums1 to the end of nums
nums.insert(nums.end(), nums1.begin(), nums1.end());
list.java
/* Concatenate two lists */
List<Integer> nums1 = new ArrayList<>(Arrays.asList(new Integer[] { 6, 8, 7, 10, 9 }));
nums.addAll(nums1);  // Concatenate nums1 to the end of nums
list.cs
/* Concatenate two lists */
List<int> nums1 = [6, 8, 7, 10, 9];
nums.AddRange(nums1);  // Concatenate nums1 to the end of nums
list_test.go
/* Concatenate two lists */
nums1 := []int{6, 8, 7, 10, 9}
nums = append(nums, nums1...)  // Concatenate nums1 to the end of nums
list.swift
/* Concatenate two lists */
let nums1 = [6, 8, 7, 10, 9]
nums.append(contentsOf: nums1) // Concatenate nums1 to the end of nums
list.js
/* Concatenate two lists */
const nums1 = [6, 8, 7, 10, 9];
nums.push(...nums1);  // Concatenate nums1 to the end of nums
list.ts
/* Concatenate two lists */
const nums1: number[] = [6, 8, 7, 10, 9];
nums.push(...nums1);  // Concatenate nums1 to the end of nums
list.dart
/* Concatenate two lists */
List<int> nums1 = [6, 8, 7, 10, 9];
nums.addAll(nums1);  // Concatenate nums1 to the end of nums
list.rs
/* Concatenate two lists */
let nums1: Vec<i32> = vec![6, 8, 7, 10, 9];
nums.extend(nums1);
list.c
// C does not provide built-in dynamic arrays
list.kt

list.zig
// Concatenate two lists
var nums1 = std.ArrayList(i32).init(std.heap.page_allocator);
defer nums1.deinit();
try nums1.appendSlice(&[_]i32{ 6, 8, 7, 10, 9 });
try nums.insertSlice(nums.items.len, nums1.items); // Concatenate nums1 to the end of nums

6.   Sorting the list

Once the list is sorted, we can employ algorithms commonly used in array-related algorithm problems, such as "binary search" and "two-pointer" algorithms.

list.py
# Sort the list
nums.sort()  # After sorting, the list elements are in ascending order
list.cpp
/* Sort the list */
sort(nums.begin(), nums.end());  // After sorting, the list elements are in ascending order
list.java
/* Sort the list */
Collections.sort(nums);  // After sorting, the list elements are in ascending order
list.cs
/* Sort the list */
nums.Sort(); // After sorting, the list elements are in ascending order
list_test.go
/* Sort the list */
sort.Ints(nums)  // After sorting, the list elements are in ascending order
list.swift
/* Sort the list */
nums.sort() // After sorting, the list elements are in ascending order
list.js
/* Sort the list */  
nums.sort((a, b) => a - b);  // After sorting, the list elements are in ascending order
list.ts
/* Sort the list */
nums.sort((a, b) => a - b);  // After sorting, the list elements are in ascending order
list.dart
/* Sort the list */
nums.sort(); // After sorting, the list elements are in ascending order
list.rs
/* Sort the list */
nums.sort(); // After sorting, the list elements are in ascending order
list.c
// C does not provide built-in dynamic arrays
list.kt

list.zig
// Sort the list
std.sort.sort(i32, nums.items, {}, comptime std.sort.asc(i32));

4.3.2   List implementation

Many programming languages come with built-in lists, including Java, C++, Python, etc. Their implementations tend to be intricate, featuring carefully considered settings for various parameters, like initial capacity and expansion factors. Readers who are curious can delve into the source code for further learning.

To enhance our understanding of how lists work, we will attempt to implement a simplified version of a list, focusing on three crucial design aspects:

  • Initial capacity: Choose a reasonable initial capacity for the array. In this example, we choose 10 as the initial capacity.
  • Size recording: Declare a variable size to record the current number of elements in the list, updating in real-time with element insertion and deletion. With this variable, we can locate the end of the list and determine whether expansion is needed.
  • Expansion mechanism: If the list reaches full capacity upon an element insertion, an expansion process is required. This involves creating a larger array based on the expansion factor, and then transferring all elements from the current array to the new one. In this example, we stipulate that the array size should double with each expansion.
my_list.py
class MyList:
    """List class"""

    def __init__(self):
        """Constructor"""
        self._capacity: int = 10  # List capacity
        self._arr: list[int] = [0] * self._capacity  # Array (stores list elements)
        self._size: int = 0  # List length (current number of elements)
        self._extend_ratio: int = 2  # Multiple for each list expansion

    def size(self) -> int:
        """Get list length (current number of elements)"""
        return self._size

    def capacity(self) -> int:
        """Get list capacity"""
        return self._capacity

    def get(self, index: int) -> int:
        """Access element"""
        # If the index is out of bounds, throw an exception, as below
        if index < 0 or index >= self._size:
            raise IndexError("Index out of bounds")
        return self._arr[index]

    def set(self, num: int, index: int):
        """Update element"""
        if index < 0 or index >= self._size:
            raise IndexError("Index out of bounds")
        self._arr[index] = num

    def add(self, num: int):
        """Add element at the end"""
        # When the number of elements exceeds capacity, trigger the expansion mechanism
        if self.size() == self.capacity():
            self.extend_capacity()
        self._arr[self._size] = num
        self._size += 1

    def insert(self, num: int, index: int):
        """Insert element in the middle"""
        if index < 0 or index >= self._size:
            raise IndexError("Index out of bounds")
        # When the number of elements exceeds capacity, trigger the expansion mechanism
        if self._size == self.capacity():
            self.extend_capacity()
        # Move all elements after `index` one position backward
        for j in range(self._size - 1, index - 1, -1):
            self._arr[j + 1] = self._arr[j]
        self._arr[index] = num
        # Update the number of elements
        self._size += 1

    def remove(self, index: int) -> int:
        """Remove element"""
        if index < 0 or index >= self._size:
            raise IndexError("Index out of bounds")
        num = self._arr[index]
        # Move all elements after `index` one position forward
        for j in range(index, self._size - 1):
            self._arr[j] = self._arr[j + 1]
        # Update the number of elements
        self._size -= 1
        # Return the removed element
        return num

    def extend_capacity(self):
        """Extend list"""
        # Create a new array of _extend_ratio times the length of the original array and copy the original array to the new array
        self._arr = self._arr + [0] * self.capacity() * (self._extend_ratio - 1)
        # Update list capacity
        self._capacity = len(self._arr)

    def to_array(self) -> list[int]:
        """Return a list of valid lengths"""
        return self._arr[: self._size]
my_list.cpp
/* List class */
class MyList {
  private:
    int *arr;             // Array (stores list elements)
    int arrCapacity = 10; // List capacity
    int arrSize = 0;      // List length (current number of elements)
    int extendRatio = 2;   // Multiple for each list expansion

  public:
    /* Constructor */
    MyList() {
        arr = new int[arrCapacity];
    }

    /* Destructor */
    ~MyList() {
        delete[] arr;
    }

    /* Get list length (current number of elements)*/
    int size() {
        return arrSize;
    }

    /* Get list capacity */
    int capacity() {
        return arrCapacity;
    }

    /* Access element */
    int get(int index) {
        // If the index is out of bounds, throw an exception, as below
        if (index < 0 || index >= size())
            throw out_of_range("Index out of bounds");
        return arr[index];
    }

    /* Update element */
    void set(int index, int num) {
        if (index < 0 || index >= size())
            throw out_of_range("Index out of bounds");
        arr[index] = num;
    }

    /* Add element at the end */
    void add(int num) {
        // When the number of elements exceeds capacity, trigger the expansion mechanism
        if (size() == capacity())
            extendCapacity();
        arr[size()] = num;
        // Update the number of elements
        arrSize++;
    }

    /* Insert element in the middle */
    void insert(int index, int num) {
        if (index < 0 || index >= size())
            throw out_of_range("Index out of bounds");
        // When the number of elements exceeds capacity, trigger the expansion mechanism
        if (size() == capacity())
            extendCapacity();
        // Move all elements after `index` one position backward
        for (int j = size() - 1; j >= index; j--) {
            arr[j + 1] = arr[j];
        }
        arr[index] = num;
        // Update the number of elements
        arrSize++;
    }

    /* Remove element */
    int remove(int index) {
        if (index < 0 || index >= size())
            throw out_of_range("Index out of bounds");
        int num = arr[index];
        // Move all elements after `index` one position forward
        for (int j = index; j < size() - 1; j++) {
            arr[j] = arr[j + 1];
        }
        // Update the number of elements
        arrSize--;
        // Return the removed element
        return num;
    }

    /* Extend list */
    void extendCapacity() {
        // Create a new array with a length multiple of the original array by extendRatio
        int newCapacity = capacity() * extendRatio;
        int *tmp = arr;
        arr = new int[newCapacity];
        // Copy all elements from the original array to the new array
        for (int i = 0; i < size(); i++) {
            arr[i] = tmp[i];
        }
        // Free memory
        delete[] tmp;
        arrCapacity = newCapacity;
    }

    /* Convert the list to a Vector for printing */
    vector<int> toVector() {
        // Only convert elements within valid length range
        vector<int> vec(size());
        for (int i = 0; i < size(); i++) {
            vec[i] = arr[i];
        }
        return vec;
    }
};
my_list.java
/* List class */
class MyList {
    private int[] arr; // Array (stores list elements)
    private int capacity = 10; // List capacity
    private int size = 0; // List length (current number of elements)
    private int extendRatio = 2; // Multiple for each list expansion

    /* Constructor */
    public MyList() {
        arr = new int[capacity];
    }

    /* Get list length (current number of elements) */
    public int size() {
        return size;
    }

    /* Get list capacity */
    public int capacity() {
        return capacity;
    }

    /* Access element */
    public int get(int index) {
        // If the index is out of bounds, throw an exception, as below
        if (index < 0 || index >= size)
            throw new IndexOutOfBoundsException("Index out of bounds");
        return arr[index];
    }

    /* Update element */
    public void set(int index, int num) {
        if (index < 0 || index >= size)
            throw new IndexOutOfBoundsException("Index out of bounds");
        arr[index] = num;
    }

    /* Add element at the end */
    public void add(int num) {
        // When the number of elements exceeds capacity, trigger the expansion mechanism
        if (size == capacity())
            extendCapacity();
        arr[size] = num;
        // Update the number of elements
        size++;
    }

    /* Insert element in the middle */
    public void insert(int index, int num) {
        if (index < 0 || index >= size)
            throw new IndexOutOfBoundsException("Index out of bounds");
        // When the number of elements exceeds capacity, trigger the expansion mechanism
        if (size == capacity())
            extendCapacity();
        // Move all elements after `index` one position backward
        for (int j = size - 1; j >= index; j--) {
            arr[j + 1] = arr[j];
        }
        arr[index] = num;
        // Update the number of elements
        size++;
    }

    /* Remove element */
    public int remove(int index) {
        if (index < 0 || index >= size)
            throw new IndexOutOfBoundsException("Index out of bounds");
        int num = arr[index];
        // Move all elements after `index` one position forward
        for (int j = index; j < size - 1; j++) {
            arr[j] = arr[j + 1];
        }
        // Update the number of elements
        size--;
        // Return the removed element
        return num;
    }

    /* Extend list */
    public void extendCapacity() {
        // Create a new array with a length multiple of the original array by extendRatio, and copy the original array to the new array
        arr = Arrays.copyOf(arr, capacity() * extendRatio);
        // Update list capacity
        capacity = arr.length;
    }

    /* Convert the list to an array */
    public int[] toArray() {
        int size = size();
        // Only convert elements within valid length range
        int[] arr = new int[size];
        for (int i = 0; i < size; i++) {
            arr[i] = get(i);
        }
        return arr;
    }
}
my_list.cs
[class]{MyList}-[func]{}
my_list.go
[class]{myList}-[func]{}
my_list.swift
[class]{MyList}-[func]{}
my_list.js
[class]{MyList}-[func]{}
my_list.ts
[class]{MyList}-[func]{}
my_list.dart
[class]{MyList}-[func]{}
my_list.rs
[class]{MyList}-[func]{}
my_list.c
[class]{MyList}-[func]{}
my_list.kt
[class]{MyList}-[func]{}
my_list.rb
[class]{MyList}-[func]{}
my_list.zig
[class]{MyList}-[func]{}
Feel free to drop your insights, questions or suggestions