跳转至

10.4   哈希优化策略

在算法题中,我们常通过将线性查找替换为哈希查找来降低算法的时间复杂度。我们借助一个算法题来加深理解。

Question

给定一个整数数组 nums 和一个目标元素 target ,请在数组中搜索“和”为 target 的两个元素,并返回它们的数组索引。返回任意一个解即可。

10.4.1   线性查找:以时间换空间

考虑直接遍历所有可能的组合。如图 10-9 所示,我们开启一个两层循环,在每轮中判断两个整数的和是否为 target ,若是,则返回它们的索引。

线性查找求解两数之和

图 10-9   线性查找求解两数之和

代码如下所示:

two_sum.py
def two_sum_brute_force(nums: list[int], target: int) -> list[int]:
    """方法一:暴力枚举"""
    # 两层循环,时间复杂度为 O(n^2)
    for i in range(len(nums) - 1):
        for j in range(i + 1, len(nums)):
            if nums[i] + nums[j] == target:
                return [i, j]
    return []
two_sum.cpp
/* 方法一:暴力枚举 */
vector<int> twoSumBruteForce(vector<int> &nums, int target) {
    int size = nums.size();
    // 两层循环,时间复杂度为 O(n^2)
    for (int i = 0; i < size - 1; i++) {
        for (int j = i + 1; j < size; j++) {
            if (nums[i] + nums[j] == target)
                return {i, j};
        }
    }
    return {};
}
two_sum.java
/* 方法一:暴力枚举 */
int[] twoSumBruteForce(int[] nums, int target) {
    int size = nums.length;
    // 两层循环,时间复杂度为 O(n^2)
    for (int i = 0; i < size - 1; i++) {
        for (int j = i + 1; j < size; j++) {
            if (nums[i] + nums[j] == target)
                return new int[] { i, j };
        }
    }
    return new int[0];
}
two_sum.cs
/* 方法一:暴力枚举 */
int[] TwoSumBruteForce(int[] nums, int target) {
    int size = nums.Length;
    // 两层循环,时间复杂度为 O(n^2)
    for (int i = 0; i < size - 1; i++) {
        for (int j = i + 1; j < size; j++) {
            if (nums[i] + nums[j] == target)
                return [i, j];
        }
    }
    return [];
}
two_sum.go
/* 方法一:暴力枚举 */
func twoSumBruteForce(nums []int, target int) []int {
    size := len(nums)
    // 两层循环,时间复杂度为 O(n^2)
    for i := 0; i < size-1; i++ {
        for j := i + 1; j < size; j++ {
            if nums[i]+nums[j] == target {
                return []int{i, j}
            }
        }
    }
    return nil
}
two_sum.swift
/* 方法一:暴力枚举 */
func twoSumBruteForce(nums: [Int], target: Int) -> [Int] {
    // 两层循环,时间复杂度为 O(n^2)
    for i in nums.indices.dropLast() {
        for j in nums.indices.dropFirst(i + 1) {
            if nums[i] + nums[j] == target {
                return [i, j]
            }
        }
    }
    return [0]
}
two_sum.js
/* 方法一:暴力枚举 */
function twoSumBruteForce(nums, target) {
    const n = nums.length;
    // 两层循环,时间复杂度为 O(n^2)
    for (let i = 0; i < n; i++) {
        for (let j = i + 1; j < n; j++) {
            if (nums[i] + nums[j] === target) {
                return [i, j];
            }
        }
    }
    return [];
}
two_sum.ts
/* 方法一:暴力枚举 */
function twoSumBruteForce(nums: number[], target: number): number[] {
    const n = nums.length;
    // 两层循环,时间复杂度为 O(n^2)
    for (let i = 0; i < n; i++) {
        for (let j = i + 1; j < n; j++) {
            if (nums[i] + nums[j] === target) {
                return [i, j];
            }
        }
    }
    return [];
}
two_sum.dart
/* 方法一: 暴力枚举 */
List<int> twoSumBruteForce(List<int> nums, int target) {
  int size = nums.length;
  // 两层循环,时间复杂度为 O(n^2)
  for (var i = 0; i < size - 1; i++) {
    for (var j = i + 1; j < size; j++) {
      if (nums[i] + nums[j] == target) return [i, j];
    }
  }
  return [0];
}
two_sum.rs
/* 方法一:暴力枚举 */
pub fn two_sum_brute_force(nums: &Vec<i32>, target: i32) -> Option<Vec<i32>> {
    let size = nums.len();
    // 两层循环,时间复杂度为 O(n^2)
    for i in 0..size - 1 {
        for j in i + 1..size {
            if nums[i] + nums[j] == target {
                return Some(vec![i as i32, j as i32]);
            }
        }
    }
    None
}
two_sum.c
/* 方法一:暴力枚举 */
int *twoSumBruteForce(int *nums, int numsSize, int target, int *returnSize) {
    for (int i = 0; i < numsSize; ++i) {
        for (int j = i + 1; j < numsSize; ++j) {
            if (nums[i] + nums[j] == target) {
                int *res = malloc(sizeof(int) * 2);
                res[0] = i, res[1] = j;
                *returnSize = 2;
                return res;
            }
        }
    }
    *returnSize = 0;
    return NULL;
}
two_sum.kt
/* 方法一:暴力枚举 */
fun twoSumBruteForce(nums: IntArray, target: Int): IntArray {
    val size = nums.size
    // 两层循环,时间复杂度为 O(n^2)
    for (i in 0..<size - 1) {
        for (j in i + 1..<size) {
            if (nums[i] + nums[j] == target) return intArrayOf(i, j)
        }
    }
    return IntArray(0)
}
two_sum.rb
### 方法一:暴力枚举 ###
def two_sum_brute_force(nums, target)
  # 两层循环,时间复杂度为 O(n^2)
  for i in 0...(nums.length - 1)
    for j in (i + 1)...nums.length
      return [i, j] if nums[i] + nums[j] == target
    end
  end

  []
end
two_sum.zig
// 方法一:暴力枚举
fn twoSumBruteForce(nums: []i32, target: i32) ?[2]i32 {
    var size: usize = nums.len;
    var i: usize = 0;
    // 两层循环,时间复杂度为 O(n^2)
    while (i < size - 1) : (i += 1) {
        var j = i + 1;
        while (j < size) : (j += 1) {
            if (nums[i] + nums[j] == target) {
                return [_]i32{@intCast(i), @intCast(j)};
            }
        }
    }
    return null;
}
可视化运行

此方法的时间复杂度为 \(O(n^2)\) ,空间复杂度为 \(O(1)\) ,在大数据量下非常耗时。

10.4.2   哈希查找:以空间换时间

考虑借助一个哈希表,键值对分别为数组元素和元素索引。循环遍历数组,每轮执行图 10-10 所示的步骤。

  1. 判断数字 target - nums[i] 是否在哈希表中,若是,则直接返回这两个元素的索引。
  2. 将键值对 nums[i] 和索引 i 添加进哈希表。

辅助哈希表求解两数之和

two_sum_hashtable_step2

two_sum_hashtable_step3

图 10-10   辅助哈希表求解两数之和

实现代码如下所示,仅需单层循环即可:

two_sum.py
def two_sum_hash_table(nums: list[int], target: int) -> list[int]:
    """方法二:辅助哈希表"""
    # 辅助哈希表,空间复杂度为 O(n)
    dic = {}
    # 单层循环,时间复杂度为 O(n)
    for i in range(len(nums)):
        if target - nums[i] in dic:
            return [dic[target - nums[i]], i]
        dic[nums[i]] = i
    return []
two_sum.cpp
/* 方法二:辅助哈希表 */
vector<int> twoSumHashTable(vector<int> &nums, int target) {
    int size = nums.size();
    // 辅助哈希表,空间复杂度为 O(n)
    unordered_map<int, int> dic;
    // 单层循环,时间复杂度为 O(n)
    for (int i = 0; i < size; i++) {
        if (dic.find(target - nums[i]) != dic.end()) {
            return {dic[target - nums[i]], i};
        }
        dic.emplace(nums[i], i);
    }
    return {};
}
two_sum.java
/* 方法二:辅助哈希表 */
int[] twoSumHashTable(int[] nums, int target) {
    int size = nums.length;
    // 辅助哈希表,空间复杂度为 O(n)
    Map<Integer, Integer> dic = new HashMap<>();
    // 单层循环,时间复杂度为 O(n)
    for (int i = 0; i < size; i++) {
        if (dic.containsKey(target - nums[i])) {
            return new int[] { dic.get(target - nums[i]), i };
        }
        dic.put(nums[i], i);
    }
    return new int[0];
}
two_sum.cs
/* 方法二:辅助哈希表 */
int[] TwoSumHashTable(int[] nums, int target) {
    int size = nums.Length;
    // 辅助哈希表,空间复杂度为 O(n)
    Dictionary<int, int> dic = [];
    // 单层循环,时间复杂度为 O(n)
    for (int i = 0; i < size; i++) {
        if (dic.ContainsKey(target - nums[i])) {
            return [dic[target - nums[i]], i];
        }
        dic.Add(nums[i], i);
    }
    return [];
}
two_sum.go
/* 方法二:辅助哈希表 */
func twoSumHashTable(nums []int, target int) []int {
    // 辅助哈希表,空间复杂度为 O(n)
    hashTable := map[int]int{}
    // 单层循环,时间复杂度为 O(n)
    for idx, val := range nums {
        if preIdx, ok := hashTable[target-val]; ok {
            return []int{preIdx, idx}
        }
        hashTable[val] = idx
    }
    return nil
}
two_sum.swift
/* 方法二:辅助哈希表 */
func twoSumHashTable(nums: [Int], target: Int) -> [Int] {
    // 辅助哈希表,空间复杂度为 O(n)
    var dic: [Int: Int] = [:]
    // 单层循环,时间复杂度为 O(n)
    for i in nums.indices {
        if let j = dic[target - nums[i]] {
            return [j, i]
        }
        dic[nums[i]] = i
    }
    return [0]
}
two_sum.js
/* 方法二:辅助哈希表 */
function twoSumHashTable(nums, target) {
    // 辅助哈希表,空间复杂度为 O(n)
    let m = {};
    // 单层循环,时间复杂度为 O(n)
    for (let i = 0; i < nums.length; i++) {
        if (m[target - nums[i]] !== undefined) {
            return [m[target - nums[i]], i];
        } else {
            m[nums[i]] = i;
        }
    }
    return [];
}
two_sum.ts
/* 方法二:辅助哈希表 */
function twoSumHashTable(nums: number[], target: number): number[] {
    // 辅助哈希表,空间复杂度为 O(n)
    let m: Map<number, number> = new Map();
    // 单层循环,时间复杂度为 O(n)
    for (let i = 0; i < nums.length; i++) {
        let index = m.get(target - nums[i]);
        if (index !== undefined) {
            return [index, i];
        } else {
            m.set(nums[i], i);
        }
    }
    return [];
}
two_sum.dart
/* 方法二: 辅助哈希表 */
List<int> twoSumHashTable(List<int> nums, int target) {
  int size = nums.length;
  // 辅助哈希表,空间复杂度为 O(n)
  Map<int, int> dic = HashMap();
  // 单层循环,时间复杂度为 O(n)
  for (var i = 0; i < size; i++) {
    if (dic.containsKey(target - nums[i])) {
      return [dic[target - nums[i]]!, i];
    }
    dic.putIfAbsent(nums[i], () => i);
  }
  return [0];
}
two_sum.rs
/* 方法二:辅助哈希表 */
pub fn two_sum_hash_table(nums: &Vec<i32>, target: i32) -> Option<Vec<i32>> {
    // 辅助哈希表,空间复杂度为 O(n)
    let mut dic = HashMap::new();
    // 单层循环,时间复杂度为 O(n)
    for (i, num) in nums.iter().enumerate() {
        match dic.get(&(target - num)) {
            Some(v) => return Some(vec![*v as i32, i as i32]),
            None => dic.insert(num, i as i32),
        };
    }
    None
}
two_sum.c
/* 哈希表 */
typedef struct {
    int key;
    int val;
    UT_hash_handle hh; // 基于 uthash.h 实现
} HashTable;

/* 哈希表查询 */
HashTable *find(HashTable *h, int key) {
    HashTable *tmp;
    HASH_FIND_INT(h, &key, tmp);
    return tmp;
}

/* 哈希表元素插入 */
void insert(HashTable *h, int key, int val) {
    HashTable *t = find(h, key);
    if (t == NULL) {
        HashTable *tmp = malloc(sizeof(HashTable));
        tmp->key = key, tmp->val = val;
        HASH_ADD_INT(h, key, tmp);
    } else {
        t->val = val;
    }
}

/* 方法二:辅助哈希表 */
int *twoSumHashTable(int *nums, int numsSize, int target, int *returnSize) {
    HashTable *hashtable = NULL;
    for (int i = 0; i < numsSize; i++) {
        HashTable *t = find(hashtable, target - nums[i]);
        if (t != NULL) {
            int *res = malloc(sizeof(int) * 2);
            res[0] = t->val, res[1] = i;
            *returnSize = 2;
            return res;
        }
        insert(hashtable, nums[i], i);
    }
    *returnSize = 0;
    return NULL;
}
two_sum.kt
/* 方法二:辅助哈希表 */
fun twoSumHashTable(nums: IntArray, target: Int): IntArray {
    val size = nums.size
    // 辅助哈希表,空间复杂度为 O(n)
    val dic = HashMap<Int, Int>()
    // 单层循环,时间复杂度为 O(n)
    for (i in 0..<size) {
        if (dic.containsKey(target - nums[i])) {
            return intArrayOf(dic[target - nums[i]]!!, i)
        }
        dic[nums[i]] = i
    }
    return IntArray(0)
}
two_sum.rb
### 方法二:辅助哈希表 ###
def two_sum_hash_table(nums, target)
  # 辅助哈希表,空间复杂度为 O(n)
  dic = {}
  # 单层循环,时间复杂度为 O(n)
  for i in 0...nums.length
    return [dic[target - nums[i]], i] if dic.has_key?(target - nums[i])

    dic[nums[i]] = i
  end

  []
end
two_sum.zig
// 方法二:辅助哈希表
fn twoSumHashTable(nums: []i32, target: i32) !?[2]i32 {
    var size: usize = nums.len;
    // 辅助哈希表,空间复杂度为 O(n)
    var dic = std.AutoHashMap(i32, i32).init(std.heap.page_allocator);
    defer dic.deinit();
    var i: usize = 0;
    // 单层循环,时间复杂度为 O(n)
    while (i < size) : (i += 1) {
        if (dic.contains(target - nums[i])) {
            return [_]i32{dic.get(target - nums[i]).?, @intCast(i)};
        }
        try dic.put(nums[i], @intCast(i));
    }
    return null;
}
可视化运行

此方法通过哈希查找将时间复杂度从 \(O(n^2)\) 降至 \(O(n)\) ,大幅提升运行效率。

由于需要维护一个额外的哈希表,因此空间复杂度为 \(O(n)\)尽管如此,该方法的整体时空效率更为均衡,因此它是本题的最优解法

欢迎在评论区留下你的见解、问题或建议